8 projects for "source code" with 2 filters applied:

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Leverage AI to Automate Medical Coding Icon
    Leverage AI to Automate Medical Coding

    Medical Coding Solution

    As a healthcare provider, you should be paid promptly for the services you provide to patients. Slow, inefficient, and error-prone manual coding keeps you from the financial peace you deserve. XpertDox’s autonomous coding solution accelerates the revenue cycle so you can focus on providing great healthcare.
    Learn More
  • 1
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    JEPA (Joint-Embedding Predictive Architecture) captures the idea of predicting missing high-level representations rather than reconstructing pixels, aiming for robust, scalable self-supervised learning. A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. The...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Deep Learning Models

    Deep Learning Models

    A collection of various deep learning architectures, models, and tips

    This repository collects clear, well-documented implementations of deep learning models and training utilities written by Sebastian Raschka. The code favors readability and pedagogy: components are organized so you can trace data flow through layers, losses, optimizers, and evaluation. Examples span fundamental architectures—MLPs, CNNs, RNN/Transformers—and practical tasks like image classification or text modeling. Reproducible training scripts and configuration files make it...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AudioCraft

    AudioCraft

    Audiocraft is a library for audio processing and generation

    AudioCraft is a PyTorch library for text-to-audio and text-to-music generation, packaging research models and tooling for training and inference. It includes MusicGen for music generation conditioned on text (and optionally melody) and AudioGen for text-conditioned sound effects and environmental audio. Both models operate over discrete audio tokens produced by a neural codec (EnCodec), which acts like a tokenizer for waveforms and enables efficient sequence modeling. The repo provides...
    Downloads: 0 This Week
    Last Update:
    See Project
  • FusionAuth: Authentication and User Management Software Icon
    FusionAuth: Authentication and User Management Software

    Offer your users flexible authentication options, including passwords, passwordless, single sign-on (SSO), and multi-factor authentication (MFA).

    FusionAuth adds login, registration, SSO, MFA, and a bazillion other features to your app in days - not months.
    Learn More
  • 5
    tf2_course

    tf2_course

    Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

    tf2_course provides the notebooks for the “Deep Learning with TensorFlow 2 and Keras” course authored by the same author, Aurélien Géron. It is structured as a teaching toolkit: you’ll find notebooks covering neural networks with Keras, lower-level TensorFlow APIs, data loading & preprocessing, convolutional and recurrent networks, and deployment/distribution of models. The material is intended for learners who already have foundational knowledge of ML and wish to deepen their understanding...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    deep-q-learning

    deep-q-learning

    Minimal Deep Q Learning (DQN & DDQN) implementations in Keras

    The deep-q-learning repository authored by keon provides a Python-based implementation of the Deep Q-Learning algorithm — a cornerstone method in reinforcement learning. It implements the core logic needed to train an agent using Q-learning with neural networks (i.e. approximating Q-values via deep nets), setting up environment interaction loops, experience replay, network updates, and policy behavior. For learners and researchers interested in reinforcement learning, this repo offers a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TensorFlow Course

    TensorFlow Course

    Simple and ready-to-use tutorials for TensorFlow

    This repository houses a highly popular (~16k stars) set of TensorFlow tutorials and example code aimed at beginners and intermediate users. It includes Jupyter notebooks and scripts that cover neural network fundamentals, model training, deployment, and more, with support for Google Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    LearningToCompare_FSL

    LearningToCompare_FSL

    Learning to Compare: Relation Network for Few-Shot Learning

    LearningToCompare_FSL is a PyTorch implementation of the “Learning to Compare: Relation Network for Few-Shot Learning” paper, focusing on the few-shot learning experiments described in that work. The core idea implemented here is the relation network, which learns to compare pairs of feature embeddings and output relation scores that indicate whether two images belong to the same class, enabling classification from only a handful of labeled examples. The repository provides training and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next