Browse free open source C++ Deep Learning Frameworks and projects below. Use the toggles on the left to filter open source C++ Deep Learning Frameworks by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    The Open Source Computer Vision Library has >2500 algorithms, extensive documentation and sample code for real-time computer vision. It works on Windows, Linux, Mac OS X, Android, iOS in your browser through JavaScript. Languages: C++, Python, Julia, Javascript Homepage: https://opencv.org Q&A forum: https://forum.opencv.org/ Documentation: https://docs.opencv.org Source code: https://github.com/opencv Please pay special attention to our tutorials! https://docs.opencv.org/master Books about the OpenCV are described here: https://opencv.org/books.html
    Leader badge
    Downloads: 3,523 This Week
    Last Update:
    See Project
  • 2
    AirSim

    AirSim

    A simulator for drones, cars and more, built on Unreal Engine

    AirSim is an open-source, cross platform simulator for drones, cars and more vehicles, built on Unreal Engine with an experimental Unity release in the works. It supports software-in-the-loop simulation with popular flight controllers such as PX4 & ArduPilot and hardware-in-loop with PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped into any Unreal environment. AirSim's development is oriented towards the goal of creating a platform for AI research to experiment with deep learning, computer vision and reinforcement learning algorithms for autonomous vehicles. For this purpose, AirSim also exposes APIs to retrieve data and control vehicles in a platform independent way. AirSim is fully enabled for multiple vehicles. This capability allows you to create multiple vehicles easily and use APIs to control them.
    Downloads: 34 This Week
    Last Update:
    See Project
  • 3
    ONNX Runtime

    ONNX Runtime

    ONNX Runtime: cross-platform, high performance ML inferencing

    ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transforms. ONNX Runtime training can accelerate the model training time on multi-node NVIDIA GPUs for transformer models with a one-line addition for existing PyTorch training scripts. Support for a variety of frameworks, operating systems and hardware platforms. Built-in optimizations that deliver up to 17X faster inferencing and up to 1.4X faster training.
    Downloads: 31 This Week
    Last Update:
    See Project
  • 4
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including Classical CNN (VGG AlexNet GoogleNet Inception), Face Detection (MTCNN RetinaFace), Segmentation (FCN PSPNet UNet YOLACT), and more. ncnn is currently being used in a number of Tencent applications, namely: QQ, Qzone, WeChat, and Pitu.
    Downloads: 26 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime, Post-Training Optimization Tool, as well as CPU, GPU, MYRIAD, multi device and heterogeneous plugins to accelerate deep learning inferencing on Intel® CPUs and Intel® Processor Graphics. It supports pre-trained models from the Open Model Zoo, along with 100+ open source and public models in popular formats such as TensorFlow, ONNX, PaddlePaddle, MXNet, Caffe, Kaldi.
    Downloads: 25 This Week
    Last Update:
    See Project
  • 6
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers, embedded, or automotive product platforms. TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and enables you to optimize inference leveraging libraries, development tools, and technologies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance computing, and graphics. With new NVIDIA Ampere Architecture GPUs, TensorRT also leverages sparse tensor cores providing an additional performance boost.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 7
    Torch-TensorRT

    Torch-TensorRT

    PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT

    Torch-TensorRT is a compiler for PyTorch/TorchScript, targeting NVIDIA GPUs via NVIDIA’s TensorRT Deep Learning Optimizer and Runtime. Unlike PyTorch’s Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into a module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extension and compiles modules that integrate into the JIT runtime seamlessly. After compilation using the optimized graph should feel no different than running a TorchScript module. You also have access to TensorRT’s suite of configurations at compile time, so you are able to specify operating precision (FP32/FP16/INT8) and other settings for your module.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 8
    ONNX

    ONNX

    Open standard for machine learning interoperability

    ONNX is an open format built to represent machine learning models. ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring). ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 9
    Detect and Track

    Detect and Track

    Code release for "Detect to Track and Track to Detect", ICCV 2017

    Detect-Track is the official implementation of the ICCV 2017 paper Detect to Track and Track to Detect by Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. The framework unifies object detection and tracking into a single pipeline, allowing detection to support tracking and tracking to enhance detection performance. Built upon a modified version of R-FCN, the code provides implementations using backbone networks such as ResNet-50, ResNet-101, ResNeXt-101, and Inception-v4, with results demonstrating state-of-the-art accuracy on the ImageNet VID dataset. The repository includes MATLAB-based training and testing scripts, along with pre-trained models and pre-computed region proposals for reproducibility. Multiple testing configurations are available, including multi-frame input and enhanced versions that refine tracking boxes and integrate detection confidence across frames.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Share your screen instantly while on a phone call with CrankWheel for an engaging presentation. Icon
    Share your screen instantly while on a phone call with CrankWheel for an engaging presentation.

    For salespeople and customer service agents who want to compliment their phone calls with visual elements.

    Our 10x simpler screen sharing tool is designed for you if you spend your days on the phone with clients, and need to add a visual presentation to close sales. No more scheduling a follow-up meeting, or teaching them to use a complex tool. Send them a text message or email, and they see your screen in seconds.
    Learn More
  • 10
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is about 1 to 4. The library is tested regularly on MS Windows, Linux, and Mac OS X systems. No other packages are required to use the library, only APIs that are provided by an out of the box OS are needed. There is no installation or configure step needed before you can use the library. All operating system specific code is isolated inside the OS abstraction layers which are kept as small as possible.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    oneDNN

    oneDNN

    oneAPI Deep Neural Network Library (oneDNN)

    This software was previously known as Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN) and Deep Neural Network Library (DNNL). oneAPI Deep Neural Network Library (oneDNN) is an open-source cross-platform performance library of basic building blocks for deep learning applications. oneDNN is part of oneAPI. The library is optimized for Intel(R) Architecture Processors, Intel Processor Graphics and Xe Architecture graphics. oneDNN has experimental support for the following architectures: Arm* 64-bit Architecture (AArch64), NVIDIA* GPU, OpenPOWER* Power ISA (PPC64), IBMz* (s390x), and RISC-V. oneDNN is intended for deep learning applications and framework developers interested in improving application performance on Intel CPUs and GPUs. Deep learning practitioners should use one of the applications enabled with oneDNN.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    PaddlePaddle

    PaddlePaddle

    PArallel Distributed Deep LEarning: Machine Learning Framework

    PaddlePaddle is an open source deep learning industrial platform with advanced technologies and a rich set of features that make innovation and application of deep learning easier. It is the only independent R&D deep learning platform in China, and has been widely adopted in various sectors including manufacturing, agriculture and enterprise service. PaddlePaddle covers core deep learning frameworks, basic model libraries, end-to-end development kits and more, with support for both dynamic and static graphs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    PyTorch/XLA

    PyTorch/XLA

    Enabling PyTorch on Google TPU

    PyTorch/XLA is a Python package that uses the XLA deep learning compiler to connect the PyTorch deep learning framework and Cloud TPUs. You can try it right now, for free, on a single Cloud TPU with Google Colab, and use it in production and on Cloud TPU Pods with Google Cloud. Take a look at one of our Colab notebooks to quickly try different PyTorch networks running on Cloud TPUs and learn how to use Cloud TPUs as PyTorch devices. We are also introducing new TPU VMs for more transparent and easier access to the TPU hardware. This is our recommedned way of running PyTorch/XLA on Cloud TPU. Please check out our Cloud TPU VM User Guide. Cloud TPU VM is currently on general availability and provides direct access to the TPU host. The recommended setup for running distributed training on TPU Pods uses the pairing of Compute VM Instance Groups and TPU Pods. Each of the Compute VM in the instance group drives 8 cores on the TPU Pod.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Caffe Framework

    Caffe Framework

    Caffe, a fast open framework for deep learning

    Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. Gain the lowest memory usage when inferencing a model by leveraging our unique pushdown memory planner. NOTE: MegEngine now supports Python installation on Linux-64bit/Windows-64bit/MacOS(CPU-Only)-10.14+/Android 7+(CPU-Only) platforms with Python from 3.5 to 3.8. On Windows 10 you can either install the Linux distribution through Windows Subsystem for Linux (WSL) or install the Windows distribution directly. Many other platforms are supported for inference.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Coqui STT

    Coqui STT

    The deep learning toolkit for speech-to-text

    Coqui STT is a fast, open-source, multi-platform, deep-learning toolkit for training and deploying speech-to-text models. Coqui STT is battle-tested in both production and research. Multiple possible transcripts, each with an associated confidence score. Experience the immediacy of script-to-performance. With Coqui text-to-speech, production times go from months to minutes. With Coqui, the post is a pleasure. Effortlessly clone the voices of your talent and have the clone handle the problems in post. With Coqui, dubbing is a delight. Effortlessly clone the voice of your talent into another language and let the clone do the dub. With text-to-speech, experience the immediacy of script-to-performance. Cast from a wide selection of high-quality, directable, emotive voices or clone a voice to suit your needs. With Coqui text-to-speech, production times go from months to minutes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train your own DNN models onboard Jetson with PyTorch. Ready to dive into deep learning? It only takes two days. We’ll provide you with all the tools you need, including easy to follow guides, software samples such as TensorRT code, and even pre-trained network models including ImageNet and DetectNet examples. Follow these directions to integrate deep learning into your platform of choice and quickly develop a proof-of-concept design.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    MACE

    MACE

    Deep learning inference framework optimized for mobile platforms

    Mobile AI Compute Engine (or MACE for short) is a deep learning inference framework optimized for mobile heterogeneous computing on Android, iOS, Linux and Windows devices. Runtime is optimized with NEON, OpenCL and Hexagon, and Winograd algorithm is introduced to speed up convolution operations. The initialization is also optimized to be faster. Chip-dependent power options like big.LITTLE scheduling, Adreno GPU hints are included as advanced APIs. UI responsiveness guarantee is sometimes obligatory when running a model. Mechanism like automatically breaking OpenCL kernel into small units is introduced to allow better preemption for the UI rendering task. Graph level memory allocation optimization and buffer reuse are supported. The core library tries to keep minimum external dependencies to keep the library footprint small.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Scalable Distributed Deep-RL

    Scalable Distributed Deep-RL

    A TensorFlow implementation of Scalable Distributed Deep-RL

    Scalable Agent is the open implementation of IMPALA (Importance Weighted Actor-Learner Architectures), a highly scalable distributed reinforcement learning framework developed by Google DeepMind. IMPALA introduced a new paradigm for efficiently training agents across large-scale environments by decoupling acting and learning processes. In this architecture, multiple actor processes interact with their environments in parallel to collect trajectories, which are then asynchronously sent to a centralized learner for policy updates. The learner uses importance weighting to correct for policy lag between actors and the learner, enabling stable off-policy training at scale. This design allows the system to scale efficiently to hundreds of environments and billions of frames while maintaining sample efficiency and stability. The implementation supports training in DeepMind Lab (DMLab) and has also been adapted for other environments like Atari and Street View.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Project EVE AI
    EVEAI is a Deep Learning Library based on python Keras and Tensorflow. EVEAI dll allows embedding inference images from keras models into user-written applications. Under Windows, the EVEAI training Tool provides services to train user specific image datasets and EVEAI dll provides services to existing Windows applications which support inference images. Please visit https://github.com/Hommoner/EVEAI for more information.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Caffe

    Caffe

    A fast open framework for deep learning

    Caffe is an open source deep learning framework that’s focused on expression, speed and modularity. It’s got an expressive architecture that encourages application and innovation, and extensible code that’s great for active development. Caffe also offers great speed, capable of processing over 60M images per day with a single NVIDIA K40 GPU. It’s arguably one of the fastest convnet implementations around. Caffe is developed by the Berkeley AI Research (BAIR)/The Berkeley Vision and Learning Center (BVLC) and a great community of contributors that continue to make Caffe state-of-the-art in both code and models. It’s been used in numerous projects, from startup prototypes and academic research projects, to large scale industrial applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks. Deep learning applications require complex, multi-stage data processing pipelines that include loading, decoding, cropping, resizing, and many other augmentations. These data processing pipelines, which are currently executed on the CPU, have become a bottleneck, limiting the performance and scalability of training and inference. DALI addresses the problem of the CPU bottleneck by offloading data preprocessing to the GPU. Additionally, DALI relies on its own execution engine, built to maximize the throughput of the input pipeline.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    The core idea is to remove the error sources and difficulties of Deep Learning applications by providing a safe haven of commoditized practices, all available as a single core. While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. Full Open Source, with an ecosystem of tools (API clients, video, annotation, ...) Fast Server written in pure C++, a single codebase for Cloud, Desktop & Embedded.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Euler

    Euler

    A distributed graph deep learning framework.

    As a general data structure with strong expressive ability, graphs can be used to describe many problems in the real world, such as user networks in social scenarios, user and commodity networks in e-commerce scenarios, communication networks in telecom scenarios, and transaction networks in financial scenarios. and drug molecule networks in medical scenarios, etc. Data in the fields of text, speech, and images is easier to process into a grid-like type of Euclidean space, which is suitable for processing by existing deep learning models. Graph is a data type in non-Euclidean space and cannot be directly applied to existing methods, requiring a specially designed graph neural network system. Graph-based learning methods such as graph neural networks combine end-to-end learning with inductive reasoning, and are expected to solve a series of problems such as relational reasoning and interpretability that deep learning cannot handle.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25

    FastoCloud PRO

    IPTV/NVR/CCTV/Video cloud https://fastocloud.com

    IPTV/Video cloud Features: Cross-platform (Linux, MacOSX, FreeBSD, Raspbian/Armbian) GPU/CPU Encode/Decode/Post Processing Stream statistics CCTV Adaptive hls streams Load balancing Temporary urls HLS push EPG scanning Subtitles to text conversions AD insertion Logo overlay Video effects Relays Timeshifts Catchups Playlists Restream/Transcode from online streaming services like Youtube, Twitch Mozaic Many Outputs Physical Inputs Streaming Protocols File Formats Presets Vods/Series server-side support Pay per view channels Channels on demand HTTP Live Streaming (HLS) server-side support Public API, client server communication via JSON RPC Protocol gzip compression Deep learning video analysis Supported deep learning frameworks: Tensorflow NCSDK Caffe ML Hardware:
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next