7 projects for "using" with 2 filters applied:

  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • 1
    Resume-Matcher

    Resume-Matcher

    Improve your resumes with Resume Matcher

    Resume-Matcher is a command-line application that compares resumes against job descriptions using natural language processing. It provides a compatibility score based on keyword relevance and highlights areas where the resume aligns—or doesn't—with the target role. Designed for job seekers and HR professionals, it helps improve resume tailoring and streamlines candidate screening.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Megatron

    Megatron

    Ongoing research training transformer models at scale

    ...This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor, sequence, and pipeline), and multi-node pre-training of transformer based models such as GPT, BERT, and T5 using mixed precision. Megatron is also used in NeMo Megatron, a framework to help enterprises overcome the challenges of building and training sophisticated natural language processing models with billions and trillions of parameters. Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    MATLAB Deep Learning Model Hub

    MATLAB Deep Learning Model Hub

    Discover pretrained models for deep learning in MATLAB

    ...Pretrained image classification networks have already learned to extract powerful and informative features from natural images. Use them as a starting point to learn a new task using transfer learning. Inputs are RGB images, the output is the predicted label and score.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. The architecture is designed to scale: spatiotemporal ViT backbones, flexible masking schedules, and efficient sampling let it train on long clips while remaining stable. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Exposure Correction

    Exposure Correction

    Learning multi-scale deep model correcting over- and under- exposed

    Exposure_Correction is a research project that provides the implementation for the paper Learning Multi-Scale Photo Exposure Correction (CVPR 2021). The repository focuses on correcting poorly exposed photographs, handling both underexposure and overexposure using a deep learning approach. The method employs a multi-scale framework that learns to enhance images by adjusting exposure levels across different spatial resolutions. This allows the model to preserve fine details while correcting global lighting inconsistencies. The repository includes pre-trained models, datasets, and training/testing code to enable reproducibility and experimentation. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Robust Tube MPC

    Robust Tube MPC

    Example implementation for robust model predictive control using tube

    robust-tube-mpc is a MATLAB implementation of robust tube-based Model Predictive Control (MPC). The framework provides tools to design and simulate controllers that maintain stability and constraint satisfaction in the presence of bounded disturbances. Tube-based MPC achieves robustness by combining a nominal trajectory planner with an error feedback controller that keeps the actual system state within a "tube" around the nominal trajectory. This repository includes example scripts and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    deep-q-learning

    deep-q-learning

    Minimal Deep Q Learning (DQN & DDQN) implementations in Keras

    The deep-q-learning repository authored by keon provides a Python-based implementation of the Deep Q-Learning algorithm — a cornerstone method in reinforcement learning. It implements the core logic needed to train an agent using Q-learning with neural networks (i.e. approximating Q-values via deep nets), setting up environment interaction loops, experience replay, network updates, and policy behavior. For learners and researchers interested in reinforcement learning, this repo offers a concrete, runnable example bridging theory and practice: you can execute the code, play with hyperparameters, observe convergence behavior, and see how deep Q-learning learns policies over time in standard environments. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next