7 projects for "simple-draw" with 2 filters applied:

  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software. Icon
    Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software.

    Banks, lending institutions

    Founded in 2004, axefinance is a global market-leading software provider focused on credit risk automation for lenders looking to provide an efficient, competitive, and seamless omnichannel financing journey for all client segments (FI, Retail, Commercial, and Corporate.)
    Learn More
  • 1
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    ...A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well with simple linear probes and minimal fine-tuning. The repository provides training recipes, data pipelines, and evaluation utilities for image JEPA variants and often includes ablations that illuminate which masking and architectural choices matter. Because the objective is non-autoregressive and operates in embedding space, JEPA tends to be compute-efficient and stable at scale. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    AudioCraft

    AudioCraft

    Audiocraft is a library for audio processing and generation

    ...Both models operate over discrete audio tokens produced by a neural codec (EnCodec), which acts like a tokenizer for waveforms and enables efficient sequence modeling. The repo provides inference scripts, checkpoints, and simple Python APIs so you can generate clips from prompts or incorporate the models into applications. It also contains training code and recipes, so researchers can fine-tune on custom data or explore new objectives without building infrastructure from scratch. Example notebooks, CLI tools, and audio utilities help with prompt design, conditioning on reference audio, and post-processing to produce ready-to-share outputs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    ...The architecture is designed to scale: spatiotemporal ViT backbones, flexible masking schedules, and efficient sampling let it train on long clips while remaining stable. Trained representations transfer well to downstream tasks such as action recognition, temporal localization, and video retrieval, often with simple linear probes or light fine-tuning. The repository typically includes end-to-end recipes—data pipelines, augmentation policies, training scripts, and evaluation harnesses.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 5
    deep-q-learning

    deep-q-learning

    Minimal Deep Q Learning (DQN & DDQN) implementations in Keras

    The deep-q-learning repository authored by keon provides a Python-based implementation of the Deep Q-Learning algorithm — a cornerstone method in reinforcement learning. It implements the core logic needed to train an agent using Q-learning with neural networks (i.e. approximating Q-values via deep nets), setting up environment interaction loops, experience replay, network updates, and policy behavior. For learners and researchers interested in reinforcement learning, this repo offers a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    TensorFlow Course

    TensorFlow Course

    Simple and ready-to-use tutorials for TensorFlow

    This repository houses a highly popular (~16k stars) set of TensorFlow tutorials and example code aimed at beginners and intermediate users. It includes Jupyter notebooks and scripts that cover neural network fundamentals, model training, deployment, and more, with support for Google Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Meta-Learning-Papers

    Meta-Learning-Papers

    Meta Learning/Learning to Learn/One Shot Learning/Few Shot Learning

    Meta-Learning-Papers is a curated bibliography focused specifically on meta-learning, learning-to-learn, one-shot learning, and few-shot learning, intended for researchers and practitioners interested in this rapidly evolving subfield of machine learning. It catalogs foundational “legacy” papers that introduced key concepts, as well as more recent work that extends meta-learning to new domains or architectures. The list spans topics such as gradient-based meta-learning, metric-based and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next