...The code favors readability and pedagogy: components are organized so you can trace data flow through layers, losses, optimizers, and evaluation. Examples span fundamental architectures—MLPs, CNNs, RNN/Transformers—and practical tasks like image classification or text modeling. Reproducible training scripts and configuration files make it straightforward to rerun experiments or adapt them to your own datasets. The repo often pairs implementations with notes on design choices and trade-offs, turning it into both a toolbox and a learning resource. It’s suitable for students, researchers prototyping ideas, and practitioners who want clean baselines before adding complexity.