Showing 7 open source projects for "intel"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    oneDNN

    oneDNN

    oneAPI Deep Neural Network Library (oneDNN)

    This software was previously known as Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN) and Deep Neural Network Library (DNNL). oneAPI Deep Neural Network Library (oneDNN) is an open-source cross-platform performance library of basic building blocks for deep learning applications. oneDNN is part of oneAPI. The library is optimized for Intel(R) Architecture Processors, Intel Processor Graphics and Xe Architecture graphics. oneDNN has experimental support for the following architectures: Arm* 64-bit Architecture (AArch64), NVIDIA* GPU, OpenPOWER* Power ISA (PPC64), IBMz* (s390x), and RISC-V. oneDNN is intended for deep learning applications and framework developers interested in improving application performance on Intel CPUs and GPUs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    ...Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime, Post-Training Optimization Tool, as well as CPU, GPU, MYRIAD, multi device and heterogeneous plugins to accelerate deep learning inferencing on Intel® CPUs and Intel® Processor Graphics. It supports pre-trained models from the Open Model Zoo, along with 100+ open source and public models in popular formats such as TensorFlow, ONNX, PaddlePaddle, MXNet, Caffe, Kaldi.
    Downloads: 22 This Week
    Last Update:
    See Project
  • 3
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. They've been tested for machine learning workloads on Amazon EC2, Amazon ECS and Amazon EKS services as well. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    ...AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. They've been tested for machine learning workloads on Amazon EC2, Amazon ECS and Amazon EKS services as well.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Outplacement, Executive Coaching and Career Development | Careerminds Icon
    Outplacement, Executive Coaching and Career Development | Careerminds

    Careerminds outplacement includes personalized coaching and a high-tech approach to help transition employees back to work faster.

    By helping to avoid the potential risks of RIFs or layoffs through our global outplacement services, companies can move forward with their goals while preserving their internal culture, employer brand, and bottom lines.
    Learn More
  • 5
    NLP Architect

    NLP Architect

    A model library for exploring state-of-the-art deep learning

    NLP Architect is an open-source Python library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing and Natural Language Understanding neural networks. The library includes our past and ongoing NLP research and development efforts as part of Intel AI Lab. NLP Architect is designed to be flexible for adding new models, neural network components, data handling methods, and for easy training and running models. NLP Architect is a model-oriented library designed to showcase novel and different neural network optimizations. The library contains NLP/NLU-related models per task, different neural network topologies (which are used in models), procedures for simplifying workflows in the library, pre-defined data processors and dataset loaders and misc utilities. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    nGraph

    nGraph

    nGraph has moved to OpenVINO

    ...We've also seen performance boosts running workloads that are not included on the list of Validated workloads, thanks to nGraph's powerful subgraph pattern matching. Additionally, we have integrated nGraph with PlaidML to provide deep learning performance acceleration on Intel, nVidia, & AMD GPUs. nGraph Compiler aims to accelerate developing AI workloads using any deep learning framework and deploying to a variety of hardware targets. We strongly believe in providing freedom, performance, and ease of use to AI developers. Our documentation has extensive information about how to use nGraph Compiler stack to create an nGraph computational graph, integrate custom frameworks, and to interact with supported backends.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    ...Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu backend is selected by default, so the above command is equivalent to if a compatible GPU resource is found on the system. The Intel Math Kernel Library takes advantages of the parallelization and vectorization capabilities of Intel Xeon and Xeon Phi systems. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next