Showing 84 open source projects for "all-in-one"

View related business solutions
  • Top-Rated Free CRM Software Icon
    Top-Rated Free CRM Software

    216,000+ customers in over 135 countries grow their businesses with HubSpot

    HubSpot is an AI-powered customer platform with all the software, integrations, and resources you need to connect your marketing, sales, and customer service. HubSpot's connected platform enables you to grow your business faster by focusing on what matters most: your customers.
    Get started free
  • Payroll Services for Small Businesses | QuickBooks Icon
    Payroll Services for Small Businesses | QuickBooks

    Save 50% off for 3 months with QuickBooks Payroll when you Buy Now

    Easily pay your team and access powerful tools, employee benefits, and supportive experts with the #1 online payroll service provider. Manage payroll and access HR and employee services in one place. Pay your team automatically once your payroll setup is complete. We'll calculate, file, and pay your payroll taxes automatically.
    Learn More
  • 1
    DocArray

    DocArray

    The data structure for multimodal data

    ... science powerhouse: greatly accelerate data scientists’ work on embedding, k-NN matching, querying, visualizing, evaluating via Torch/TensorFlow/ONNX/PaddlePaddle on CPU/GPU. Data in transit: optimized for network communication, ready-to-wire at anytime with fast and compressed serialization in Protobuf, bytes, base64, JSON, CSV, DataFrame. Perfect for streaming and out-of-memory data. One-stop k-NN: Unified and consistent API for mainstream vector databases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Hivemind

    Hivemind

    Decentralized deep learning in PyTorch. Built to train models

    Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers. Distributed training without a master node: Distributed Hash Table allows connecting computers in a decentralized network. Fault-tolerant backpropagation: forward and backward passes succeed even if some nodes are unresponsive or take too long to respond. Decentralized parameter...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Petastorm

    Petastorm

    Petastorm library enables single machine or distributed training

    ... Python-based machine learning (ML) frameworks such as Tensorflow, PyTorch, and PySpark. It can also be used from pure Python code. A dataset created using Petastorm is stored in Apache Parquet format. On top of a Parquet schema, petastorm also stores higher-level schema information that makes multidimensional arrays into a native part of a petastorm dataset. Petastorm supports extensible data codecs. These enable a user to use one of the standard data compressions (jpeg, png) or implement her own.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    PyTorch/XLA

    PyTorch/XLA

    Enabling PyTorch on Google TPU

    PyTorch/XLA is a Python package that uses the XLA deep learning compiler to connect the PyTorch deep learning framework and Cloud TPUs. You can try it right now, for free, on a single Cloud TPU with Google Colab, and use it in production and on Cloud TPU Pods with Google Cloud. Take a look at one of our Colab notebooks to quickly try different PyTorch networks running on Cloud TPUs and learn how to use Cloud TPUs as PyTorch devices. We are also introducing new TPU VMs for more transparent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The #1 Embedded Analytics Solution for SaaS Teams. Icon
    The #1 Embedded Analytics Solution for SaaS Teams.

    Qrvey saves engineering teams time and money with a turnkey multi-tenant solution connecting your data warehouse to your SaaS application.

    Qrvey’s comprehensive embedded analytics software enables you to design more customizable analytics experiences for your end users.
    Try Developer Playground
  • 5
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models. GluonTS requires Python 3.6 or newer, and the easiest way to install it is via pip. We train a DeepAR-model and make predictions using the simple "airpassengers" dataset. The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months). We split the dataset into train and test parts,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    oneDNN

    oneDNN

    oneAPI Deep Neural Network Library (oneDNN)

    ... architectures: Arm* 64-bit Architecture (AArch64), NVIDIA* GPU, OpenPOWER* Power ISA (PPC64), IBMz* (s390x), and RISC-V. oneDNN is intended for deep learning applications and framework developers interested in improving application performance on Intel CPUs and GPUs. Deep learning practitioners should use one of the applications enabled with oneDNN.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    ... distribution, security risk control. In addition, MNN is also used on embedded devices, such as IoT. MNN Workbench could be downloaded from MNN's homepage, which provides pretrained models, visualized training tools, and one-click deployment of models to devices. Android platform, core so size is about 400KB, OpenCL so is about 400KB, Vulkan so is about 400KB. Supports hybrid computing on multiple devices. Currently supports CPU and GPU.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Axon

    Axon

    Nx-powered Neural Networks

    Nx-powered Neural Networks for Elixir. Axon consists of the following components. Functional API – A low-level API of numerical definitions (defn) of which all other APIs build on. Model Creation API – A high-level model creation API which manages model initialization and application. Optimization API – An API for creating and using first-order optimization techniques based on the Optax library. Training API – An API for quickly training models, inspired by PyTorch Ignite. Axon provides...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Auth0 Free: 25K MAUs + 5-Min Setup Icon
    Auth0 Free: 25K MAUs + 5-Min Setup

    Enterprise Auth, Zero Friction: Any Framework • 30+ SDKs • Universal Login

    Production-ready login in 10 lines of code. SSO, MFA & social auth included. Scale seamlessly beyond free tier with Okta’s enterprise security.
    Get Your API Keys
  • 10
    GROBID

    GROBID

    A machine learning software for extracting information

    ... here covers the usual bibliographical information (e.g. title, abstract, authors, affiliations, keywords, etc.). References extraction and parsing from articles in PDF format, around .87 F1-score against on an independent PubMed Central set of 1943 PDF containing 90,125 references, and around .89 on a similar bioRxiv set of 2000 PDF (using the Deep Learning citation model). All the usual publication metadata are covered (including DOI, PMID, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    ... with the Hugging Face Hub, allowing you to easily load and share a dataset with the wider NLP community. There are currently over 2658 datasets, and more than 34 metrics available. Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow). Smart caching: never wait for your data to process several times.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    ... tree models. To understand how a single feature effects the output of the model we can plot the SHAP value of that feature vs. the value of the feature for all the examples in a dataset. Since SHAP values represent a feature's responsibility for a change in the model output, the plot below represents the change in predicted house price as RM (the average number of rooms per house in an area) changes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    ... graph learning via Quiver, a large number of common benchmark datasets (based on simple interfaces to create your own), the GraphGym experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. All it takes is 10-20 lines of code to get started with training a GNN model (see the next section for a quick tour).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    ... of functionality of PyTorch Geometric to other packages, which needs to be additionally installed. These packages come with their own CPU and GPU kernel implementations based on C++/CUDA extensions. We do not recommend installation as root user on your system python. Please setup an Anaconda/Miniconda environment or create a Docker image. We provide pip wheels for all major OS/PyTorch/CUDA combinations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Thinc

    Thinc

    A refreshing functional take on deep learning

    ..., configure and deploy custom models built with their favorite framework. Switch between PyTorch, TensorFlow and MXNet models without changing your application, or even create mutant hybrids using zero-copy array interchange. Develop faster and catch bugs sooner with sophisticated type checking. Trying to pass a 1-dimensional array into a model that expects two dimensions? That’s a type error. Your editor can pick it up as the code leaves your fingers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Auto-PyTorch

    Auto-PyTorch

    Automatic architecture search and hyperparameter optimization

    While early AutoML frameworks focused on optimizing traditional ML pipelines and their hyperparameters, another trend in AutoML is to focus on neural architecture search. To bring the best of these two worlds together, we developed Auto-PyTorch, which jointly and robustly optimizes the network architecture and the training hyperparameters to enable fully automated deep learning (AutoDL). Auto-PyTorch is mainly developed to support tabular data (classification, regression) and time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    ... your own DNN models onboard Jetson with PyTorch. Ready to dive into deep learning? It only takes two days. We’ll provide you with all the tools you need, including easy to follow guides, software samples such as TensorRT code, and even pre-trained network models including ImageNet and DetectNet examples. Follow these directions to integrate deep learning into your platform of choice and quickly develop a proof-of-concept design.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    Catalyst is a PyTorch framework for accelerated Deep Learning research and development. It allows you to write compact but full-featured Deep Learning pipelines with just a few lines of code. With Catalyst you get a full set of features including a training loop with metrics, model checkpointing and more, all without the boilerplate. Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    The fastai book

    The fastai book

    The fastai book, published as Jupyter Notebooks

    These notebooks cover an introduction to deep learning, fastai, and PyTorch. fastai is a layered API for deep learning; for more information, see the fastai paper. These notebooks are used for a MOOC and form the basis of this book, which is currently available for purchase. It does not have the same GPL restrictions that are on this repository. The code in the notebooks and python .py files is covered by the GPL v3 license; see the LICENSE file for details. The remainder (including all...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    YOLOv3

    YOLOv3

    Object detection architectures and models pretrained on the COCO data

    Fast, precise and easy to train, YOLOv5 has a long and successful history of real time object detection. Treat YOLOv5 as a university where you'll feed your model information for it to learn from and grow into one integrated tool. You can get started with less than 6 lines of code. with YOLOv5 and its Pytorch implementation. Have a go using our API by uploading your own image and watch as YOLOv5 identifies objects using our pretrained models. Start training your model without being an expert...
    Downloads: 171 This Week
    Last Update:
    See Project
  • 23
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    ... frames and Pipeless takes care of everything else. You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. You can deploy your Pipeless application with a single command to edge and IoT devices or the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Graph4NLP

    Graph4NLP

    Graph4nlp is the library for the easy use of Graph Neural Networks

    ... of Graph4NLP is shown in the following figure, where boxes with dashed lines represent the features under development. Graph4NLP consists of four different layers: 1) Data Layer, 2) Module Layer, 3) Model Layer, and 4) Application Layer. Graph4nlp aims to make it incredibly easy to use GNNs in NLP tasks (check out Graph4NLP Documentation).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Face Mask Detection

    Face Mask Detection

    Face Mask Detection system based on computer vision and deep learning

    Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras. Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect face masks in static images as well as in real-time video streams. Amid the ongoing COVID-19 pandemic, there are no efficient face mask detection applications which are now in high demand for transportation means, densely populated areas, residential...
    Downloads: 1 This Week
    Last Update:
    See Project