Showing 16 open source projects for "solver"

View related business solutions
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    SCIP.jl

    SCIP.jl

    Julia interface to SCIP solver

    SCIP.jl is a Julia interface to the SCIP solver. This wrapper is maintained by the SCIP project with the help of the JuMP community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    HiGHS.jl

    HiGHS.jl

    Julia wrapper for the HiGHS solver

    HiGHS.jl is a wrapper for the HiGHS solver.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    VoronoiFVM.jl

    VoronoiFVM.jl

    Solution of nonlinear multiphysics partial differential equations

    Solver for coupled nonlinear partial differential equations (elliptic-parabolic conservation laws) based on the Voronoi finite volume method. It uses automatic differentiation via ForwardDiff.jl and DiffResults.jl to evaluate user functions along with their jacobians and calculate derivatives of solutions with respect to their parameters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Tulip.jl

    Tulip.jl

    Interior-point solver in pure Julia

    Tulip is an open-source interior-point solver for linear optimization, written in pure Julia. It implements the homogeneous primal-dual interior-point algorithm with multiple centrality corrections and therefore handles unbounded and infeasible problems. Tulip’s main feature is that its algorithmic framework is disentangled from linear algebra implementations. This allows to seamless integration of specialized routines for structured problems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Circuitscape.jl

    Circuitscape.jl

    Algorithms from circuit theory to predict connectivity

    Circuitscape is an open-source program that uses circuit theory to model connectivity in heterogeneous landscapes. Its most common applications include modeling the movement and gene flow of plants and animals, as well as identifying areas important for connectivity conservation. The new Circuitscape is built entirely in the Julia language, a new programming language for technical computing. Julia is built from the ground up to be fast. As such, this offers a number of advantages over the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    NonlinearSolve.jl

    NonlinearSolve.jl

    High-performance and differentiation-enabled nonlinear solvers

    ...The package includes its own high-performance nonlinear solvers which include the ability to swap out to fast direct and iterative linear solvers, along with the ability to use sparse automatic differentiation for Jacobian construction and Jacobian-vector products. NonlinearSolve.jl interfaces with other packages of the Julia ecosystem to make it easy to test alternative solver packages and pass small types to control algorithm swapping. It also interfaces with the ModelingToolkit.jl world of symbolic modeling to allow for automatically generating high-performance code.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Sundials.jl

    Sundials.jl

    Julia interface to Sundials, including a nonlinear solver

    This is a suite for numerically solving differential equations written in Julia and available for use in Julia, Python, and R. The purpose of this package is to supply efficient Julia implementations of solvers for various differential equations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Coluna.jl

    Coluna.jl

    Branch-and-Price-and-Cut in Julia

    Coluna is a branch-and-price-and-cut framework written in Julia. You write an original MIP that models your problem using the JuMP modeling language and our specific extension BlockDecomposition offers a syntax to specify the problem decomposition. Then, Coluna reformulates the original MIP and optimizes the reformulation using the algorithms you choose. Coluna aims to be very modular and tweakable so that you can define the behavior of your customized branch-and-price-and-cut algorithm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    DiffOpt.jl

    DiffOpt.jl

    Differentiating convex optimization programs w.r.t. program parameters

    DiffOpt.jl is a package for differentiating convex optimization programs (JuMP.jl or MathOptInterface.jl models) with respect to program parameters. Note that this package does not contain any solver. This package has two major backends, available via the reverse_differentiate! and forward_differentiate! methods, to differentiate models (quadratic or conic) with optimal solutions. Differentiable optimization is a promising field of convex optimization and has many potential applications in game theory, control theory and machine learning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    EAGO.jl

    EAGO.jl

    A development environment for robust and global optimization

    EAGO is an open-source development environment for robust and global optimization in Julia. EAGO is a deterministic global optimizer designed to address a wide variety of optimization problems, emphasizing nonlinear programs (NLPs), by propagating McCormick relaxations along the factorable structure of each expression in the NLP. Most operators supported by modern automatic differentiation (AD) packages (e.g., +, sin, cosh) are supported by EAGO and a number of utilities for sanitizing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    BlockArrays.jl

    BlockArrays.jl

    BlockArrays for Julia

    ...This means that BlockArray supports fast noncopying extraction and insertion of blocks while PseudoBlockArray supports fast access to the full matrix to use in for example a linear solver.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    ParallelStencil.jl

    ParallelStencil.jl

    Package for writing high-level code for parallel stencil computations

    ...Performance similar to CUDA C / HIP can be achieved, which is typically a large improvement over the performance reached when using only CUDA.jl or AMDGPU.jl GPU Array programming. For example, a 2-D shallow ice solver presented at JuliaCon 2020 [1] achieved a nearly 20 times better performance than a corresponding GPU Array programming implementation; in absolute terms, it reached 70% of the theoretical upper performance bound of the used Nvidia P100 GPU, as defined by the effective throughput metric, T_eff. ParallelStencil relies on the native kernel programming capabilities of CUDA.jl and AMDGPU.jl and on Base.Threads for high-performance computations on GPUs and CPUs, respectively. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    LinearSolve.jl

    LinearSolve.jl

    High-Performance Unified Interface for Linear Solvers in Julia

    LinearSolve.jl is a unified interface for the linear solving packages of Julia. It interfaces with other packages of the Julia ecosystem to make it easy to test alternative solver packages and pass small types to control algorithm swapping. It also interfaces with the ModelingToolkit.jl world of symbolic modeling to allow for automatically generating high-performance code. Performance is key: the current methods are made to be highly performant on scalar and statically sized small problems, with options for large-scale systems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SciMLBenchmarks.jl

    SciMLBenchmarks.jl

    Benchmarks for scientific machine learning (SciML) software

    SciMLBenchmarks.jl holds webpages, pdfs, and notebooks showing the benchmarks for the SciML Scientific Machine Learning Software ecosystem.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ProxSDP.jl

    ProxSDP.jl

    Semidefinite programming optimization solver

    ProxSDP is an open-source semidefinite programming (SDP) solver based on the paper "Exploiting Low-Rank Structure in Semidefinite Programming by Approximate Operator Splitting". The main advantage of ProxSDP over other state-of-the-art solvers is the ability to exploit the low-rank structure inherent to several SDP problems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ConstraintSolver.jl

    ConstraintSolver.jl

    ConstraintSolver in Julia

    This package aims to be a constraint solver completely written in Julia. The concepts are more or less fully described on my blog OpenSourc.es. There is of course also the general user manual here which explains how to solve your model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next