Showing 5 open source projects for "python tools"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 1
    DataFrames.jl

    DataFrames.jl

    In-memory tabular data in Julia

    ...It provides a familiar, flexible, and efficient interface for handling datasets, making it easy to load, manipulate, join, and analyze structured data. With syntax inspired by data frames in R and pandas in Python, it offers intuitive tools while taking advantage of Julia’s speed and type system. The package is actively maintained by the JuliaData community, with contributions from over 200 developers worldwide. It is widely used for data science, research, and production applications, supported by extensive documentation, tutorials, and a free Julia Academy course. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    InteractiveViz.jl

    InteractiveViz.jl

    Interactive visualization tools for Julia

    ...To allow generation of data points on demand through a graphics pipeline, requiring computation only at a level of detail appropriate for display at the viewing resolution. Additional data points can be generated on demand when zooming or panning. This package was partly inspired by the excellent Datashader package available in the Python ecosystem.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    ...Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing. Libraries from Python, R, C/Fortran, C++, and Java can also be used.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 5
    ScikitLearn.jl

    ScikitLearn.jl

    Julia implementation of the scikit-learn API

    The scikit-learn Python library has proven very popular with machine learning researchers and data scientists in the last five years. It provides a uniform interface for training and using models, as well as a set of tools for chaining (pipelines), evaluating, and tuning model hyperparameters. ScikitLearn.jl brings these capabilities to Julia. Its primary goal is to integrate both Julia- and Python-defined models together into the scikit-learn framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next