Showing 32 open source projects for "machine learning python"

View related business solutions
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • The Most Powerful Software Platform for EHSQ and ESG Management Icon
    The Most Powerful Software Platform for EHSQ and ESG Management

    Addresses the needs of small businesses and large global organizations with thousands of users in multiple locations.

    Choose from a complete set of software solutions across EHSQ that address all aspects of top performing Environmental, Health and Safety, and Quality management programs.
    Learn More
  • 1
    BetaML.jl

    BetaML.jl

    Beta Machine Learning Toolkit

    The Beta Machine Learning Toolkit is a package including many algorithms and utilities to implement machine learning workflows in Julia, Python, R and any other language with a Julia binding. All models are implemented entirely in Julia and are hosted in the repository itself (i.e. they are not wrapper to third-party models). If your favorite option or model is missing, you can try to implement it yourself and open a pull request to share it (see the section Contribute below) or request its implementation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    InferOpt.jl

    InferOpt.jl

    Combinatorial optimization layers for machine learning pipelines

    InferOpt.jl is a toolbox for using combinatorial optimization algorithms within machine learning pipelines. It allows you to create differentiable layers from optimization oracles that do not have meaningful derivatives. Typical examples include mixed integer linear programs or graph algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    MLJBase.jl

    MLJBase.jl

    Core functionality for the MLJ machine learning framework

    Repository for developers that provides core functionality for the MLJ machine learning framework. MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    JDF.jl

    JDF.jl

    Julia DataFrames serialization format

    JDF is a DataFrames serialization format with the following goals, fast save and load times, compressed storage on disk, enabled disk-based data manipulation (not yet achieved), and support for machine learning workloads, e.g. mini-batch, sampling (not yet achieved). JDF stores a DataFrame in a folder with each column stored as a separate file. There is also a metadata.jls file that stores metadata about the original DataFrame. Collectively, the column files, the metadata file, and the folder is called a JDF "file". JDF.jl is a pure-Julia solution and there are a lot of ways to do nifty things like compression and encapsulating the underlying struture of the arrays that's hard to do in R and Python. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Functors.jl

    Functors.jl

    Parameterise all the things

    Functors.jl provides tools to express a powerful design pattern for dealing with large/ nested structures, as in machine learning and optimization. For large machine learning models, it can be cumbersome or inefficient to work with parameters as one big, flat vector, and structs help manage complexity; but it is also desirable to easily operate over all parameters at once, e.g. for changing precision or applying an optimizer update step.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Metalhead.jl

    Metalhead.jl

    Computer vision models for Flux

    Metalhead.jl provides standard machine learning vision models for use with Flux.jl. The architectures in this package make use of pure Flux layers, and they represent the best practices for creating modules like residual blocks, inception blocks, etc. in Flux. Metalhead also provides some building blocks for more complex models in the Layers module.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    FEniCS.jl

    FEniCS.jl

    A scientific machine learning (SciML) wrapper for the FEniCS

    FEniCS.jl is a wrapper for the FEniCS library for finite element discretizations of PDEs. This wrapper includes three parts. Installation and direct access to FEniCS via a Conda installation. Alternatively one may use their current FEniCS installation. A low-level development API and provides some functionality to make directly dealing with the library a little bit easier, but still requires knowledge of FEniCS itself. Interfaces have been provided for the main functions and their...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 10
    GraphNeuralNetworks.jl

    GraphNeuralNetworks.jl

    Graph Neural Networks in Julia

    GraphNeuralNetworks.jl is a graph neural network library written in Julia and based on the deep learning framework Flux.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    QuasiMonteCarlo.jl

    QuasiMonteCarlo.jl

    Lightweight and easy generation of quasi-Monte Carlo sequences

    Lightweight and easy generation of quasi-Monte Carlo sequences with a ton of different methods on one API for easy parameter exploration in scientific machine learning (SciML). This is a lightweight package for generating Quasi-Monte Carlo (QMC) samples using various different methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    LossFunctions.jl

    LossFunctions.jl

    Julia package of loss functions for machine learning

    ...As such, it is a part of the JuliaML ecosystem. The sole purpose of this package is to provide an efficient and extensible implementation of various loss functions used throughout Machine Learning (ML). It is thus intended to serve as a special purpose back-end for other ML libraries that require losses to accomplish their tasks. To that end we provide a considerable amount of carefully implemented loss functions, as well as an API to query their properties (e.g. convexity). Furthermore, we expose methods to compute their values, derivatives, and second derivatives for single observations as well as arbitrarily sized arrays of observations. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DiffEqBayes.jl

    DiffEqBayes.jl

    Extension functionality which uses Stan.jl, DynamicHMC.jl

    This repository is a set of extension functionality for estimating the parameters of differential equations using Bayesian methods. It allows the choice of using CmdStan.jl, Turing.jl, DynamicHMC.jl and ApproxBayes.jl to perform a Bayesian estimation of a differential equation problem specified via the DifferentialEquations.jl interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ReservoirComputing.jl

    ReservoirComputing.jl

    Reservoir computing utilities for scientific machine learning (SciML)

    ReservoirComputing.jl provides an efficient, modular and easy-to-use implementation of Reservoir Computing models such as Echo State Networks (ESNs). For information on using this package please refer to the stable documentation. Use the in-development documentation to take a look at not-yet-released features.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    SciMLBase.jl

    SciMLBase.jl

    The Base interface of the SciML ecosystem

    ...The SciML common interface ties together the numerical solvers of the Julia package ecosystem into a single unified interface. It is designed for maximal efficiency and parallelism, while incorporating essential features for large-scale scientific machine learning such as differentiability, composability, and sparsity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Surrogates.jl

    Surrogates.jl

    Surrogate modeling and optimization for scientific machine learning

    A surrogate model is an approximation method that mimics the behavior of a computationally expensive simulation. In more mathematical terms: suppose we are attempting to optimize a function f(p), but each calculation of f is very expensive. It may be the case we need to solve a PDE for each point or use advanced numerical linear algebra machinery, which is usually costly. The idea is then to develop a surrogate model g which approximates f by training on previous data collected from...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    ReverseDiff

    ReverseDiff

    Reverse Mode Automatic Differentiation for Julia

    ReverseDiff is a fast and compile-able tape-based reverse mode automatic differentiation (AD) that implements methods to take gradients, Jacobians, Hessians, and higher-order derivatives of native Julia functions (or any callable object, really). While performance can vary depending on the functions you evaluate, the algorithms implemented by ReverseDiff generally outperform non-AD algorithms in both speed and accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PDMats.jl

    PDMats.jl

    Uniform Interface for positive definite matrices of various structures

    Uniform interface for positive definite matrices of various structures. Positive definite matrices are widely used in machine learning and probabilistic modeling, especially in applications related to graph analysis and Gaussian models. It is not uncommon that positive definite matrices used in practice have special structures (e.g. diagonal), which can be exploited to accelerate computation. PDMats.jl supports efficient computation on positive definite matrices of various structures. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    DiffOpt.jl

    DiffOpt.jl

    Differentiating convex optimization programs w.r.t. program parameters

    ...methods, to differentiate models (quadratic or conic) with optimal solutions. Differentiable optimization is a promising field of convex optimization and has many potential applications in game theory, control theory and machine learning. Recent work has shown how to differentiate specific subclasses of convex optimization problems. But several applications remain unexplored. With the help of automatic differentiation, differentiable optimization can have a significant impact on creating end-to-end differentiable systems to model neural networks, stochastic processes, or a game.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    SciML Style Guide for Julia

    SciML Style Guide for Julia

    A style guide for stylish Julia developers

    The SciML Style Guide is a style guide for the Julia programming language. It is used by the SciML Open Source Scientific Machine Learning Organization. As such, it is open to discussion with the community. If the standard for code contributions is that every PR needs to support every possible input type that anyone can think of, the barrier would be too high for newcomers. Instead, the principle is to be as correct as possible to begin with, and grow the generic support over time. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    JUDI.jl

    JUDI.jl

    Julia Devito inversion

    ...The focus of the package lies on seismic modeling as well as PDE-constrained optimization such as full-waveform inversion (FWI) and imaging (LS-RTM). Wave equations in JUDI are solved with Devito, a Python domain-specific language for automated finite-difference (FD) computations. JUDI's modeling operators can also be used as layers in (convolutional) neural networks to implement physics-augmented deep learning algorithms thanks to its implementation of ChainRules's rrule for the linear operators representing the discre wave equation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Catalyst.jl

    Catalyst.jl

    Chemical reaction network and systems biology interface

    ...Generated models can be used with solvers throughout the broader SciML ecosystem, including higher-level SciML packages (e.g. for sensitivity analysis, parameter estimation, machine learning applications, etc).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    SciMLBenchmarks.jl

    SciMLBenchmarks.jl

    Benchmarks for scientific machine learning (SciML) software

    SciMLBenchmarks.jl holds webpages, pdfs, and notebooks showing the benchmarks for the SciML Scientific Machine Learning Software ecosystem.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Kinetic.jl

    Kinetic.jl

    Universal modeling and simulation of fluid mechanics upon ML

    Kinetic is a computational fluid dynamics toolbox written in Julia. It aims to furnish efficient modeling and simulation methodologies for fluid dynamics, augmented by the power of machine learning. Based on differentiable programming, mechanical and neural network models are fused and solved in a unified framework. Simultaneous 1-3 dimensional numerical simulations can be performed on CPUs and GPUs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    ScikitLearn.jl

    ScikitLearn.jl

    Julia implementation of the scikit-learn API

    The scikit-learn Python library has proven very popular with machine learning researchers and data scientists in the last five years. It provides a uniform interface for training and using models, as well as a set of tools for chaining (pipelines), evaluating, and tuning model hyperparameters. ScikitLearn.jl brings these capabilities to Julia. Its primary goal is to integrate both Julia- and Python-defined models together into the scikit-learn framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next