Showing 3 open source projects for "executable"

View related business solutions
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 1
    Stan.jl

    Stan.jl

    Stan.jl illustrates the usage of the 'single method' packages

    A collection of example Stan Language programs demonstrating all methods available in Stan's cmdstan executable (as an external program) from Julia. For most applications one of the "single method" packages, e.g. StanSample.jl, StanDiagnose.jl, etc., is a better choice for day-to-day use. To execute the most important method in Stan ("sample"), use StanSample.jl. Some Pluto notebook examples can be found in the repository.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Tulip.jl

    Tulip.jl

    Interior-point solver in pure Julia

    Tulip is an open-source interior-point solver for linear optimization, written in pure Julia. It implements the homogeneous primal-dual interior-point algorithm with multiple centrality corrections and therefore handles unbounded and infeasible problems. Tulip’s main feature is that its algorithmic framework is disentangled from linear algebra implementations. This allows to seamless integration of specialized routines for structured problems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Conda.jl

    Conda.jl

    https://github.com/JuliaPy/Conda.jl

    This package allows one to use conda as a cross-platform binary provider for Julia for other Julia packages, especially to install binaries that have complicated dependencies like Python. conda is a package manager that started as the binary package manager for the Anaconda Python distribution, but it also provides arbitrary packages. Instead of the full Anaconda distribution, Conda.jl uses the miniconda Python environment, which only includes conda and its dependencies.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB