Showing 6 open source projects for "artificial intelligence algorithm"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 2
    ReinforcementLearning.jl

    ReinforcementLearning.jl

    A reinforcement learning package for Julia

    A collection of tools for doing reinforcement learning research in Julia. Provide elaborately designed components and interfaces to help users implement new algorithms. Make it easy for new users to run benchmark experiments, compare different algorithms, and evaluate and diagnose agents. Facilitate reproducibility from traditional tabular methods to modern deep reinforcement learning algorithms. Make it easy for new users to run benchmark experiments, compare different algorithms, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    BetaML.jl

    BetaML.jl

    Beta Machine Learning Toolkit

    The Beta Machine Learning Toolkit is a package including many algorithms and utilities to implement machine learning workflows in Julia, Python, R and any other language with a Julia binding. All models are implemented entirely in Julia and are hosted in the repository itself (i.e. they are not wrapper to third-party models). If your favorite option or model is missing, you can try to implement it yourself and open a pull request to share it (see the section Contribute below) or request its...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    FEniCS.jl

    FEniCS.jl

    A scientific machine learning (SciML) wrapper for the FEniCS

    FEniCS.jl is a wrapper for the FEniCS library for finite element discretizations of PDEs. This wrapper includes three parts. Installation and direct access to FEniCS via a Conda installation. Alternatively one may use their current FEniCS installation. A low-level development API and provides some functionality to make directly dealing with the library a little bit easier, but still requires knowledge of FEniCS itself. Interfaces have been provided for the main functions and their...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    ReinforcementLearningAnIntroduction.jl

    ReinforcementLearningAnIntroduction.jl

    Julia code for the book Reinforcement Learning An Introduction

    This project provides the Julia code to generate figures in the book Reinforcement Learning: An Introduction(2nd). One of our main goals is to help users understand the basic concepts of reinforcement learning from an engineer's perspective. Once you have grasped how different components are organized, you're ready to explore a wide variety of modern deep reinforcement learning algorithms in ReinforcementLearningZoo.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next