LLM-TLDR is a Python-based tool designed to dramatically reduce the amount of code a large language model needs to read by extracting the essential structure and context from a codebase and presenting only the most relevant parts to the model. Traditional approaches often dump entire files into a model’s context, which quickly exceeds token limits; LLM-TLDR instead indexes project structure, traces dependencies, and summarizes code in a way that preserves semantic relevance while shrinking...