Showing 4 open source projects for "parallel"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    Dask

    Dask

    Parallel computing with task scheduling

    Dask is a Python library for parallel and distributed computing, designed to scale analytics workloads from single machines to large clusters. It integrates with familiar tools like NumPy, Pandas, and scikit-learn while enabling execution across cores or nodes with minimal code changes. Dask excels at handling large datasets that don’t fit into memory and is widely used in data science, machine learning, and big data pipelines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    targets

    targets

    Function-oriented Make-like declarative workflows for R

    The targets package is a pipeline / workflow management tool in R, designed to coordinate multi‐step computational workflows in data science / statistics. It tracks dependencies between “targets” (computational steps), skips steps whose upstream data or code hasn’t changed, supports parallel computation, branching (dynamic generation of sub‐targets), file format abstractions, and encourages reproducible and efficient analyses. It’s something like GNU Make for R, but more integrated. Skipping computation for up-to-date targets so that unchanged parts of the workflow are not recomputed. Targets can represent files or R objects, and tracking file changes etc is incorporated.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    XGBoost

    XGBoost

    Scalable and Flexible Gradient Boosting

    ...It supports regression, classification, ranking and user defined objectives, and runs on all major operating systems and cloud platforms. XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems. XGBoost can be used for Python, Java, Scala, R, C++ and more. It can run on a single machine, Hadoop, Spark, Dask, Flink and most other distributed environments, and is capable of solving problems beyond billions of examples.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4

    DEPRECATED - KVFinder

    Cavity Detection PyMOL plugin

    ...[parKVFinder] A Linux/macOS version is available in this GitHub repository, https://github.com/LBC-LNBio/parKVFinder, while a Windows version is in this GitHub repository, https://github.com/LBC-LNBio/parKVFinder-win. Please read and cite the original paper ParKVFinder: A thread-level parallel approach in biomolecular cavity detection (10.1016/j.softx.2020.100606). [pyKVFinder] pyKVFinder is available in this Python Package Index (PyPI) repository, https://pypi.org/project/pyKVFinder and this GitHub repository, https://github.com/LBC-LNBio/pyKVFinder. Please read and cite the original paper pyKVFinder: an efficient and integrable Python package for biomolecular cavity detection and characterization in data science (10.1186/s12859-021-04519-4).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Award-Winning Medical Office Software Designed for Your Specialty Icon
    Award-Winning Medical Office Software Designed for Your Specialty

    Succeed and scale your practice with cloud-based, data-backed, AI-powered healthcare software.

    RXNT is an ambulatory healthcare technology pioneer that empowers medical practices and healthcare organizations to succeed and scale through innovative, data-backed, AI-powered software.
    Learn More
  • Previous
  • You're on page 1
  • Next