Showing 3 open source projects for "testing"

View related business solutions
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 1
    Great Expectations

    Great Expectations

    Always know what to expect from your data

    Great Expectations helps data teams eliminate pipeline debt, through data testing, documentation, and profiling. Software developers have long known that testing and documentation are essential for managing complex codebases. Great Expectations brings the same confidence, integrity, and acceleration to data science and data engineering teams. Expectations are assertions for data. They are the workhorse abstraction in Great Expectations, covering all kinds of common data issues. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Cookiecutter Data Science

    Cookiecutter Data Science

    Project structure for doing and sharing data science work

    ...And we're not talking about bikeshedding the indentation aesthetics or pedantic formatting standards, ultimately, data science code quality is about correctness and reproducibility. It's no secret that good analyses are often the result of very scattershot and serendipitous explorations. Tentative experiments and rapidly testing approaches that might not work out are all part of the process for getting to the good stuff, and there is no magic bullet to turn data exploration into a simple, linear progression.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    MCPower

    MCPower

    MCPower — simple Monte Carlo power analysis for complex models

    ...It guides users through the full workflow across three tabs: Model setup (formula input with live parsing, CSV data upload with auto-detected variable types, effect size sliders, and correlation editing), Analysis configuration (find power for a given sample size or find the minimum sample size for a target power, with multiple testing correction and scenario analysis), and Results (interactive charts, exportable tables, and auto-generated Python replication scripts). Supports both standard linear models and mixed-effects models. Additional features include analysis history, configurable scenarios, and built-in documentation.
    Downloads: 24 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB