Showing 16 open source projects for "no code"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Yeastar: Business Phone System and Unified Communications Icon
    Yeastar: Business Phone System and Unified Communications

    Go beyond just a PBX with all communications integrated as one.

    User-friendly, optimized, and scalable, the Yeastar P-Series Phone System redefines business connectivity by bringing together calling, meetings, omnichannel messaging, and integrations in one simple platform—removing the limitations of distance, platforms, and systems.
    Learn More
  • 1
    Positron

    Positron

    Positron, a next-generation data science IDE

    ...The IDE supports notebook and script workflows, integration of data-app frameworks (such as Shiny, Streamlit, Dash), database and cloud connections, and built-in AI-assisted capabilities to help write code, explore data, and build models.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments and other workflows with ClearML powerful and versatile set of classes and methods. The ClearML Server storing experiment, model, and workflow data, and supports the Web UI experiment manager, and ML-Ops automation for reproducibility and tuning. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Cookiecutter Data Science

    Cookiecutter Data Science

    Project structure for doing and sharing data science work

    ...When we think about data analysis, we often think just about the resulting reports, insights, or visualizations. While these end products are generally the main event, it's easy to focus on making the products look nice and ignore the quality of the code that generates them. Because these end products are created programmatically, code quality is still important! And we're not talking about bikeshedding the indentation aesthetics or pedantic formatting standards, ultimately, data science code quality is about correctness and reproducibility. It's no secret that good analyses are often the result of very scattershot and serendipitous explorations. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    marimo

    marimo

    A reactive notebook for Python

    marimo is an open-source reactive notebook for Python, reproducible, git-friendly, executable as a script, and shareable as an app. marimo notebooks are reproducible, extremely interactive, designed for collaboration (git-friendly!), deployable as scripts or apps, and fit for modern Pythonista. Run one cell and marimo reacts by automatically running affected cells, eliminating the error-prone chore of managing the notebook state. marimo's reactive UI elements, like data frame GUIs and plots,...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Trumba is an All-in-one Calendar Management and Event Registration platform Icon
    Trumba is an All-in-one Calendar Management and Event Registration platform

    Great for live, virtual and hybrid events

    Publish, promote and track your events more affordably and effectively—all in one place.
    Learn More
  • 5
    Dask

    Dask

    Parallel computing with task scheduling

    Dask is a Python library for parallel and distributed computing, designed to scale analytics workloads from single machines to large clusters. It integrates with familiar tools like NumPy, Pandas, and scikit-learn while enabling execution across cores or nodes with minimal code changes. Dask excels at handling large datasets that don’t fit into memory and is widely used in data science, machine learning, and big data pipelines.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Recommenders

    Recommenders

    Best practices on recommendation systems

    ...Independent or incubating algorithms and utilities are candidates for the contrib folder. This will house contributions which may not easily fit into the core repository or need time to refactor or mature the code and add necessary tests.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    ...Scale large deep learning recommender models by distributing large embedding tables that exceed available GPU and CPU memory. Deploy data transformations and trained models to production with only a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    ...You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to any Docker container, making it compatible with SageMaker for training models. If you use a prebuilt SageMaker Docker image for training, this library may already be included. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    AWS SDK for pandas

    AWS SDK for pandas

    Easy integration with Athena, Glue, Redshift, Timestream, Neptune

    aws-sdk-pandas (formerly AWS Data Wrangler) bridges pandas with the AWS analytics stack so DataFrames flow seamlessly to and from cloud services. With a few lines of code, you can read from and write to Amazon S3 in Parquet/CSV/JSON/ORC, register tables in the AWS Glue Data Catalog, and query with Amazon Athena directly into pandas. The library abstracts efficient patterns like partitioning, compression, and vectorized I/O so you get performant data lake operations without hand-rolling boilerplate. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Easy-to-use Business Software for the Waste Management Software Industry Icon
    Easy-to-use Business Software for the Waste Management Software Industry

    Increase efficiency, expedite accounts receivables, optimize routes, acquire new customers, & more!

    DOP Software’s mission is to streamline waste and recycling business’ processes by providing them with dynamic, comprehensive software and services that increase productivity and quality of performance.
    Learn More
  • 10
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    ...You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where the container is deployed. Containerizing your model and code enables fast and reliable deployment of your model. The SageMaker Inference Toolkit implements a model serving stack and can be easily added to any Docker container, making it deployable to SageMaker. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    sadsa

    sadsa

    SADSA (Software Application for Data Science and Analytics)

    ...Built using Python for the GUI, SADSA provides a menu-driven interface for handling datasets, applying transformations, running advanced statistical tests, machine learning algorithms, and generating insightful plots — all without writing code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Orchest

    Orchest

    Build data pipelines, the easy way

    Code, run and monitor your data pipelines all from your browser! From idea to scheduled pipeline in hours, not days. Interactively build your data science pipelines in our visual pipeline editor. Versioned as a JSON file. Run scripts or Jupyter notebooks as steps in a pipeline. Python, R, Julia, JavaScript, and Bash are supported. Parameterize your pipelines and run them periodically on a cron schedule.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    ...You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. These notebooks provide code and descriptions for creating and running workflows in AWS Step Functions Using the AWS Step Functions Data Science SDK. In Amazon SageMaker, example Jupyter notebooks are available in the example notebooks portion of a notebook instance. To run the AWS Step Functions Data Science SDK example notebooks locally, download the sample notebooks and open them in a working Jupyter instance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    ...This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. Usable as remote kernel (Jupyter) or remote machine (VS Code) via SSH. Easy to deploy on Mac, Linux, and Windows via Docker. Jupyter, JupyterLab, and Visual Studio Code web-based IDEs.By default, the workspace container has no resource constraints and can use as much of a given resource as the host’s kernel scheduler allows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Data Science Notes

    Data Science Notes

    Curated collection of data science learning materials

    Data Science Notes is a large, curated collection of data science learning materials, with explanations, code snippets, and structured notes across the typical end-to-end workflow. It spans foundational math and statistics through data wrangling, visualization, machine learning, and practical project organization. The content emphasizes hands-on understanding by pairing narrative notes with runnable examples, making it useful for both self-study and classroom settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    SageMaker Containers

    SageMaker Containers

    Create SageMaker-compatible Docker containers

    ...You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to any Docker container, making it compatible with SageMaker for training models. If you use a prebuilt SageMaker Docker image for training, this library may already be included. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next