Showing 3 open source projects for "java runtime environment"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Deliver trusted data with dbt Icon
    Deliver trusted data with dbt

    dbt Labs empowers data teams to build reliable, governed data pipelines—accelerating analytics and AI initiatives with speed and confidence.

    Data teams use dbt to codify business logic and make it accessible to the entire organization—for use in reporting, ML modeling, and operational workflows.
    Learn More
  • 1
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    ...To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to any Docker container, making it compatible with SageMaker for training models. If you use a prebuilt SageMaker Docker image for training, this library may already be included. Write a training script (eg. train.py). ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    ...You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where the container is deployed. Containerizing your model and code enables fast and reliable deployment of your model. The SageMaker Inference Toolkit implements a model serving stack and can be easily added to any Docker container, making it deployable to SageMaker. This library's serving stack is built on Multi Model Server, and it can serve your own models or those you trained on SageMaker using machine learning frameworks with native SageMaker support.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    SageMaker Containers

    SageMaker Containers

    Create SageMaker-compatible Docker containers

    ...SageMaker Containers writes this information as environment variables that are available inside the script.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next