Showing 33 open source projects for "python::module"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    Quadratic

    Quadratic

    Data science spreadsheet with Python & SQL

    ...Our goal is to build a spreadsheet that enables you to pull your data from its source (SaaS, Database, CSV, API, etc) and then work with that data using the most popular data science tools today (Python, Pandas, SQL, JS, Excel Formulas, etc). Quadratic has no environment to configure. The grid runs entirely in the browser with no backend service. This makes our grids completely portable and very easy to share. Quadratic has Python library support built-in. Bring the latest open-source tools directly to your spreadsheet. Quickly write code and see the output in full detail. ...
    Downloads: 19 This Week
    Last Update:
    See Project
  • 2
    marimo

    marimo

    A reactive notebook for Python

    ...Version with git, run as Python scripts, import symbols from a notebook into other notebooks or Python files, and lint or format with your favorite tools. You'll always be able to reproduce your collaborators' results. Notebooks are executed in a deterministic order, with no hidden state, delete a cell and marimo deletes its variables while updating affected cells.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Dask

    Dask

    Parallel computing with task scheduling

    Dask is a Python library for parallel and distributed computing, designed to scale analytics workloads from single machines to large clusters. It integrates with familiar tools like NumPy, Pandas, and scikit-learn while enabling execution across cores or nodes with minimal code changes. Dask excels at handling large datasets that don’t fit into memory and is widely used in data science, machine learning, and big data pipelines.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    DearPyGui

    DearPyGui

    Graphical User Interface Toolkit for Python with minimal dependencies

    Dear PyGui is an easy-to-use, dynamic, GPU-Accelerated, cross-platform graphical user interface toolkit(GUI) for Python. It is “built with” Dear ImGui. Features include traditional GUI elements such as buttons, radio buttons, menus, and various methods to create a functional layout. Additionally, DPG has an incredible assortment of dynamic plots, tables, drawings, debuggers, and multiple resource viewers. DPG is well suited for creating simple user interfaces as well as developing complex and demanding graphical interfaces. ...
    Downloads: 10 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Positron

    Positron

    Positron, a next-generation data science IDE

    Positron is a next-generation integrated development environment (IDE) created by Posit PBC (formerly RStudio Inc) specifically tailored for data science workflows in Python, R, and multi-language ecosystems. It aims to unify exploratory data analysis, production code, and data-app authoring in a single environment so that data scientists move from “question → insight → application” without switching tools. Built on the open-source Code-OSS foundation, Positron provides a familiar coding experience along with specialized panes and tooling for variable inspection, data-frame viewing, plotting previews, and interactive consoles designed for analytical work. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    AWS SDK for pandas

    AWS SDK for pandas

    Easy integration with Athena, Glue, Redshift, Timestream, Neptune

    ...The library abstracts efficient patterns like partitioning, compression, and vectorized I/O so you get performant data lake operations without hand-rolling boilerplate. It also supports Redshift, OpenSearch, and other services, enabling ETL tasks that blend SQL engines and Python transformations. Operational helpers handle IAM, sessions, and concurrency while exposing knobs for encryption, versioning, and catalog consistency. The result is a productive workflow that keeps your analytics in Python while leveraging AWS-native storage and query engines at scale.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Great Expectations

    Great Expectations

    Always know what to expect from your data

    Great Expectations helps data teams eliminate pipeline debt, through data testing, documentation, and profiling. Software developers have long known that testing and documentation are essential for managing complex codebases. Great Expectations brings the same confidence, integrity, and acceleration to data science and data engineering teams. Expectations are assertions for data. They are the workhorse abstraction in Great Expectations, covering all kinds of common data issues. Expectations...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    ClearML

    ClearML

    Streamline your ML workflow

    ...It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments and other workflows with ClearML powerful and versatile set of classes and methods. The ClearML Server storing experiment, model, and workflow data, and supports the Web UI experiment manager, and ML-Ops automation for reproducibility and tuning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 10
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    NannyML is an open-source python library that allows you to estimate post-deployment model performance (without access to targets), detect data drift, and intelligently link data drift alerts back to changes in model performance. Built for data scientists, NannyML has an easy-to-use interface, and interactive visualizations, is completely model-agnostic, and currently supports all tabular classification use cases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    PySyft

    PySyft

    Data science on data without acquiring a copy

    Most software libraries let you compute over the information you own and see inside of machines you control. However, this means that you cannot compute on information without first obtaining (at least partial) ownership of that information. It also means that you cannot compute using machines without first obtaining control over those machines. This is very limiting to human collaboration and systematically drives the centralization of data, because you cannot work with a bunch of data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    NVIDIA Merlin is an open-source library that accelerates recommender systems on NVIDIA GPUs. The library enables data scientists, machine learning engineers, and researchers to build high-performing recommenders at scale. Merlin includes tools to address common feature engineering, training, and inference challenges. Each stage of the Merlin pipeline is optimized to support hundreds of terabytes of data, which is all accessible through easy-to-use APIs. For more information, see NVIDIA...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Cookiecutter Data Science

    Cookiecutter Data Science

    Project structure for doing and sharing data science work

    A logical, reasonably standardized, but flexible project structure for doing and sharing data science work. When we think about data analysis, we often think just about the resulting reports, insights, or visualizations. While these end products are generally the main event, it's easy to focus on making the products look nice and ignore the quality of the code that generates them. Because these end products are created programmatically, code quality is still important! And we're not talking...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    tsfresh

    tsfresh

    Automatic extraction of relevant features from time series

    tsfresh is a python package. It automatically calculates a large number of time series characteristics, the so called features. tsfresh is used to to extract characteristics from time series. Without tsfresh, you would have to calculate all characteristics by hand. With tsfresh this process is automated and all your features can be calculated automatically.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    RStudio

    RStudio

    RStudio is an integrated development environment (IDE) for R

    RStudio is a powerful, full-featured integrated development environment (IDE) tailored primarily for the R programming language but increasingly supportive of other languages like Python and Julia. It brings together console, editor, plotting, workspace, history, and file-management panes into a unified interface, helping data scientists, statisticians, and analysts to work more productively. The IDE is cross-platform: there are desktop versions for Windows, macOS and Linux, as well as a server version for remote or multi-user deployment via a web browser. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    XGBoost

    XGBoost

    Scalable and Flexible Gradient Boosting

    ...XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems. XGBoost can be used for Python, Java, Scala, R, C++ and more. It can run on a single machine, Hadoop, Spark, Dask, Flink and most other distributed environments, and is capable of solving problems beyond billions of examples.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    TensorFlow.NET

    TensorFlow.NET

    .NET Standard bindings for Google's TensorFlow for developing models

    ...Since the APIs are kept as similar as possible you can immediately adapt any existing TensorFlow code in C# or F# with a zero learning curve. Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    sadsa

    sadsa

    SADSA (Software Application for Data Science and Analytics)

    SADSA (Software Application for Data Science and Analytics) is a Python-based desktop application designed to simplify statistical analysis, machine learning, and data visualization for students, researchers, and data professionals. Built using Python for the GUI, SADSA provides a menu-driven interface for handling datasets, applying transformations, running advanced statistical tests, machine learning algorithms, and generating insightful plots — all without writing code.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Orchest

    Orchest

    Build data pipelines, the easy way

    ...From idea to scheduled pipeline in hours, not days. Interactively build your data science pipelines in our visual pipeline editor. Versioned as a JSON file. Run scripts or Jupyter notebooks as steps in a pipeline. Python, R, Julia, JavaScript, and Bash are supported. Parameterize your pipelines and run them periodically on a cron schedule. Easily install language or system packages. Built on top of regular Docker container images. Creation of multiple instances with up to 8 vCPU & 32 GiB memory. A free Orchest instance with 2 vCPU & 8 GiB memory. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. These notebooks provide code and descriptions for creating and running workflows in AWS Step Functions Using the AWS Step Functions Data Science SDK. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard)...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next