Showing 29 open source projects for "machine"

View related business solutions
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 1
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit, and OpenCV. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    XGBoost

    XGBoost

    Scalable and Flexible Gradient Boosting

    ...It supports regression, classification, ranking and user defined objectives, and runs on all major operating systems and cloud platforms. XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems. XGBoost can be used for Python, Java, Scala, R, C++ and more. It can run on a single machine, Hadoop, Spark, Dask, Flink and most other distributed environments, and is capable of solving problems beyond billions of examples.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 5
    marimo

    marimo

    A reactive notebook for Python

    marimo is an open-source reactive notebook for Python, reproducible, git-friendly, executable as a script, and shareable as an app. marimo notebooks are reproducible, extremely interactive, designed for collaboration (git-friendly!), deployable as scripts or apps, and fit for modern Pythonista. Run one cell and marimo reacts by automatically running affected cells, eliminating the error-prone chore of managing the notebook state. marimo's reactive UI elements, like data frame GUIs and plots,...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments and other workflows with ClearML powerful and versatile set of classes and methods. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    ...NannyML closes the loop with performance monitoring and post deployment data science, empowering data scientist to quickly understand and automatically detect silent model failure. By using NannyML, data scientists can finally maintain complete visibility and trust in their deployed machine learning models. When the actual outcome of your deployed prediction models is delayed, or even when post-deployment target labels are completely absent, you can use NannyML's CBPE-algorithm to estimate model performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    PySyft

    PySyft

    Data science on data without acquiring a copy

    Most software libraries let you compute over the information you own and see inside of machines you control. However, this means that you cannot compute on information without first obtaining (at least partial) ownership of that information. It also means that you cannot compute using machines without first obtaining control over those machines. This is very limiting to human collaboration and systematically drives the centralization of data, because you cannot work with a bunch of data...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 10
    AI Data Science Team

    AI Data Science Team

    An AI-powered data science team of agents

    AI Data Science Team is a Python library and agent ecosystem designed to accelerate and automate common data science workflows by modeling them as specialized AI “agents” that can be orchestrated to perform tasks like data cleaning, transformation, analysis, visualization, and machine learning. It provides a modular agent framework where each agent focuses on a step in the typical data science pipeline — for example, loading data from CSV/Excel files, cleaning and wrangling messy datasets, engineering predictive features, building models with AutoML, connecting to SQL databases, and producing visual outputs — all driven by natural language or programmatic instructions. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Dask

    Dask

    Parallel computing with task scheduling

    ...It integrates with familiar tools like NumPy, Pandas, and scikit-learn while enabling execution across cores or nodes with minimal code changes. Dask excels at handling large datasets that don’t fit into memory and is widely used in data science, machine learning, and big data pipelines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    NVIDIA Merlin is an open-source library that accelerates recommender systems on NVIDIA GPUs. The library enables data scientists, machine learning engineers, and researchers to build high-performing recommenders at scale. Merlin includes tools to address common feature engineering, training, and inference challenges. Each stage of the Merlin pipeline is optimized to support hundreds of terabytes of data, which is all accessible through easy-to-use APIs. For more information, see NVIDIA Merlin on the NVIDIA developer website. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    sadsa

    sadsa

    SADSA (Software Application for Data Science and Analytics)

    SADSA (Software Application for Data Science and Analytics) is a Python-based desktop application designed to simplify statistical analysis, machine learning, and data visualization for students, researchers, and data professionals. Built using Python for the GUI, SADSA provides a menu-driven interface for handling datasets, applying transformations, running advanced statistical tests, machine learning algorithms, and generating insightful plots — all without writing code.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 14
    TensorFlow.NET

    TensorFlow.NET

    .NET Standard bindings for Google's TensorFlow for developing models

    TensorFlow.NET (TF.NET) provides a .NET Standard binding for TensorFlow. It aims to implement the complete Tensorflow API in C# which allows .NET developers to develop, train and deploy Machine Learning models with the cross-platform .NET Standard framework. TensorFlow.NET has built-in Keras high-level interface and is released as an independent package TensorFlow.Keras. SciSharp STACK's mission is to bring popular data science technology into the .NET world and to provide .NET developers with a powerful Machine Learning tool set without reinventing the wheel. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Orchest

    Orchest

    Build data pipelines, the easy way

    ...Each step runs a file in a container. It's that simple! Spin up services whose lifetime spans across the entire pipeline run. Easily define your dependencies to run on any machine. Run any subset of the pipeline directly or periodically.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    CSAPP-Labs

    CSAPP-Labs

    Solutions and Notes for Labs of Computer Systems

    CSAPP-Labs is a repository that organizes and provides practical lab exercises corresponding to the famous textbook Computer Systems: A Programmer’s Perspective (CS:APP), helping students deepen their understanding of how computer systems work at the machine level. The exercises cover core topics such as data representation, assembly language, processor architecture, cache behavior, memory hierarchy, linking, and concurrency, contextualizing abstract concepts from the book in real code and experiments. Each lab is structured to include test programs, Makefiles, harnesses, and step-by-step instructions that guide students through hands-on interaction with low-level programming and system behavior. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Self-learning-Computer-Science

    Self-learning-Computer-Science

    Resources to learn computer science in your spare time

    ...The author (an undergraduate CS student) assembled links to courses from institutions like MIT, UC Berkeley, Stanford, etc., covering mathematics, programming, data structures/algorithms, computer architecture, machine learning, software engineering and more. It’s aimed at learners who find traditional course structures restrictive and want a flexible, self-paced path through CS, with a focus on building depth and breadth rather than shortcut exam skills. The repository provides a roadmap, references, teaching materials, and sometimes the author’s own project examples, offering both guidance and community support. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Deep Learning course

    Deep Learning course

    Slides and Jupyter notebooks for the Deep Learning lectures

    Slides and Jupyter notebooks for the Deep Learning lectures at Master Year 2 Data Science from Institut Polytechnique de Paris. This course is being taught at as part of Master Year 2 Data Science IP-Paris. Note: press "P" to display the presenter's notes that include some comments and additional references. This lecture is built and maintained by Olivier Grisel and Charles Ollion.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Data Science Notes

    Data Science Notes

    Curated collection of data science learning materials

    Data Science Notes is a large, curated collection of data science learning materials, with explanations, code snippets, and structured notes across the typical end-to-end workflow. It spans foundational math and statistics through data wrangling, visualization, machine learning, and practical project organization. The content emphasizes hands-on understanding by pairing narrative notes with runnable examples, making it useful for both self-study and classroom settings. Because it aggregates topics in one place, learners can move linearly or jump into specific areas as needed during projects. The notes also highlight common pitfalls and good practices, which helps beginners adopt professional habits early. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Amazon SageMaker Examples

    Amazon SageMaker Examples

    Jupyter notebooks that demonstrate how to build models using SageMaker

    Welcome to Amazon SageMaker. This projects highlights example Jupyter notebooks for a variety of machine learning use cases that you can run in SageMaker. If you’re new to SageMaker we recommend starting with more feature-rich SageMaker Studio. It uses the familiar JupyterLab interface and has seamless integration with a variety of deep learning and data science environments and scalable compute resources for training, inference, and other ML operations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    SageMaker Containers

    SageMaker Containers

    Create SageMaker-compatible Docker containers

    Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Deep Learning with PyTorch

    Deep Learning with PyTorch

    Latest techniques in deep learning and representation learning

    This course concerns the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. The prerequisites include DS-GA 1001 Intro to Data Science or a graduate-level machine learning course. To be able to follow the exercises, you are going to need a laptop with Miniconda (a minimal version of Anaconda) and several Python packages installed. The following instruction would work as is for Mac or Ubuntu Linux users, Windows users would need to install and work in the Git BASH terminal. JupyterLab has a built-in selectable dark theme, so you only need to install something if you want to use the classic notebook interface.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
MongoDB Logo MongoDB