Showing 39 open source projects for "openai-python"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 1
    TensorFlow.NET

    TensorFlow.NET

    .NET Standard bindings for Google's TensorFlow for developing models

    ...Since the APIs are kept as similar as possible you can immediately adapt any existing TensorFlow code in C# or F# with a zero learning curve. Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Orchest

    Orchest

    Build data pipelines, the easy way

    ...From idea to scheduled pipeline in hours, not days. Interactively build your data science pipelines in our visual pipeline editor. Versioned as a JSON file. Run scripts or Jupyter notebooks as steps in a pipeline. Python, R, Julia, JavaScript, and Bash are supported. Parameterize your pipelines and run them periodically on a cron schedule. Easily install language or system packages. Built on top of regular Docker container images. Creation of multiple instances with up to 8 vCPU & 32 GiB memory. A free Orchest instance with 2 vCPU & 8 GiB memory. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. These notebooks provide code and descriptions for creating and running workflows in AWS Step Functions Using the AWS Step Functions Data Science SDK. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 5
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard)...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Data Science Notes

    Data Science Notes

    Curated collection of data science learning materials

    Data Science Notes is a large, curated collection of data science learning materials, with explanations, code snippets, and structured notes across the typical end-to-end workflow. It spans foundational math and statistics through data wrangling, visualization, machine learning, and practical project organization. The content emphasizes hands-on understanding by pairing narrative notes with runnable examples, making it useful for both self-study and classroom settings. Because it aggregates...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7

    DEPRECATED - KVFinder

    Cavity Detection PyMOL plugin

    ...Please read and cite the original paper ParKVFinder: A thread-level parallel approach in biomolecular cavity detection (10.1016/j.softx.2020.100606). [pyKVFinder] pyKVFinder is available in this Python Package Index (PyPI) repository, https://pypi.org/project/pyKVFinder and this GitHub repository, https://github.com/LBC-LNBio/pyKVFinder. Please read and cite the original paper pyKVFinder: an efficient and integrable Python package for biomolecular cavity detection and characterization in data science (10.1186/s12859-021-04519-4).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Amazon SageMaker Examples

    Amazon SageMaker Examples

    Jupyter notebooks that demonstrate how to build models using SageMaker

    ...They have the familiar Jupyter and JuypterLab interfaces that work well for single users, or small teams where users are also administrators. Advanced users also use SageMaker solely with the AWS CLI and Python scripts using boto3 and/or the SageMaker Python SDK.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    ...Rather than creating implementations from scratch, we draw from existing state-of-the-art libraries and build additional utilities around processing and featuring the data, optimizing and evaluating models, and scaling up to the cloud. The examples and best practices are provided as Python Jupyter notebooks and R markdown files and a library of utility functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 10
    SageMaker Containers

    SageMaker Containers

    Create SageMaker-compatible Docker containers

    Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Data Science at the Command Line

    Data Science at the Command Line

    Data science at the command line

    ...To get you started, author Jeroen Janssens provides a Docker image packed with over 100 Unix power tools, useful whether you work with Windows, macOS, or Linux. You’ll quickly discover why the command line is an agile, scalable, and extensible technology. Even if you’re comfortable processing data with Python or R, you’ll learn how to greatly improve your data science workflow by leveraging the command line’s power.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Deep Learning with PyTorch

    Deep Learning with PyTorch

    Latest techniques in deep learning and representation learning

    ...The prerequisites include DS-GA 1001 Intro to Data Science or a graduate-level machine learning course. To be able to follow the exercises, you are going to need a laptop with Miniconda (a minimal version of Anaconda) and several Python packages installed. The following instruction would work as is for Mac or Ubuntu Linux users, Windows users would need to install and work in the Git BASH terminal. JupyterLab has a built-in selectable dark theme, so you only need to install something if you want to use the classic notebook interface.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Rodeo

    Rodeo

    A data science IDE for Python

    A data science IDE for Python. RODEO, that is an open-source python IDE and has been brought up by the folks at yhat, is a development environment that is lightweight, intuitive and yet customizable to its very core and also contains all the features mentioned above that were searched for so long. It is just like your very own personal home base for exploration and interpretation of data that aims at Data Scientists and answers the main question, "Is there anything like RStudio for Python?" ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14

    slycat

    Web-based data science analysis and visualization platform.

    This is Slycat - a web-based data science analysis and visualization platform, created at Sandia National Laboratories. The goal of the Slycat project is to develop processes, tools and techniques to support data science, particularly analysis of large, high-dimensional data.
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB