Showing 10 open source projects for "python user interface"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    DearPyGui

    DearPyGui

    Graphical User Interface Toolkit for Python with minimal dependencies

    Dear PyGui is an easy-to-use, dynamic, GPU-Accelerated, cross-platform graphical user interface toolkit(GUI) for Python. It is “built with” Dear ImGui. Features include traditional GUI elements such as buttons, radio buttons, menus, and various methods to create a functional layout. Additionally, DPG has an incredible assortment of dynamic plots, tables, drawings, debuggers, and multiple resource viewers. DPG is well suited for creating simple user interfaces as well as developing complex...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    XGBoost

    XGBoost

    Scalable and Flexible Gradient Boosting

    XGBoost is an optimized distributed gradient boosting library, designed to be scalable, flexible, portable and highly efficient. It supports regression, classification, ranking and user defined objectives, and runs on all major operating systems and cloud platforms. XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems. XGBoost...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    NannyML is an open-source python library that allows you to estimate post-deployment model performance (without access to targets), detect data drift, and intelligently link data drift alerts back to changes in model performance. Built for data scientists, NannyML has an easy-to-use interface, and interactive visualizations, is completely model-agnostic, and currently supports all tabular classification use cases. NannyML closes the loop with performance monitoring and post deployment data...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    TensorFlow.NET

    TensorFlow.NET

    .NET Standard bindings for Google's TensorFlow for developing models

    TensorFlow.NET (TF.NET) provides a .NET Standard binding for TensorFlow. It aims to implement the complete Tensorflow API in C# which allows .NET developers to develop, train and deploy Machine Learning models with the cross-platform .NET Standard framework. TensorFlow.NET has built-in Keras high-level interface and is released as an independent package TensorFlow.Keras. SciSharp STACK's mission is to bring popular data science technology into the .NET world and to provide .NET developers...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Picsart Enterprise Background Removal API for Stunning eCommerce Visuals Icon
    Picsart Enterprise Background Removal API for Stunning eCommerce Visuals

    Instantly remove the background from your images in just one click.

    With our Remove Background API tool, you can access the transformative capabilities of automation , which will allow you to turn any photo asset into compelling product imagery. With elevated visuals quality on your digital platforms, you can captivate your audience, and therefore achieve higher engagement and sales.
    Learn More
  • 5
    cuDF

    cuDF

    GPU DataFrame Library

    ... with conda (miniconda, or the full Anaconda distribution) from the rapidsai channel. cuDF is supported only on Linux, and with Python versions 3.7 and later. The RAPIDS suite of open-source software libraries aims to enable the execution of end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization but exposing that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    AWA-Core

    AWA-Core

    Full application for factory, process engineer and Automation..

    NEW -- NEW -- NEW -- NEW -- NEW AWA-Core 2025 is coming with a totally new architecture. The core is now in Client/Server architecture and open to other applications. New interfaces for the server and client sides. Stay tuned !! AWA-Core (Another Way of Automation) is a complete suite that allows engineers, PLC programmers and factory designers to create huge projects for retrieving data, creating graphics, automatic scripts, exports and data links. You can easily manage AWA-Core and...
    Leader badge
    Downloads: 259 This Week
    Last Update:
    See Project
  • 7
    sadsa

    sadsa

    SADSA (Software Application for Data Science and Analytics)

    SADSA (Software Application for Data Science and Analytics) is a Python-based desktop application designed to simplify statistical analysis, machine learning, and data visualization for students, researchers, and data professionals. Built using Python for the GUI, SADSA provides a menu-driven interface for handling datasets, applying transformations, running advanced statistical tests, machine learning algorithms, and generating insightful plots — all without writing code.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Amazon SageMaker Examples

    Amazon SageMaker Examples

    Jupyter notebooks that demonstrate how to build models using SageMaker

    Welcome to Amazon SageMaker. This projects highlights example Jupyter notebooks for a variety of machine learning use cases that you can run in SageMaker. If you’re new to SageMaker we recommend starting with more feature-rich SageMaker Studio. It uses the familiar JupyterLab interface and has seamless integration with a variety of deep learning and data science environments and scalable compute resources for training, inference, and other ML operations. Studio offers teams and companies easy...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    SageMaker Containers

    SageMaker Containers

    Create SageMaker-compatible Docker containers

    Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Powering the best of the internet | Fastly Icon
    Powering the best of the internet | Fastly

    Fastly's edge cloud platform delivers faster, safer, and more scalable sites and apps to customers.

    Ensure your websites, applications and services can effortlessly handle the demands of your users with Fastly. Fastly’s portfolio is designed to be highly performant, personalized and secure while seamlessly scaling to support your growth.
    Try for free
  • 10
    Deep Learning with PyTorch

    Deep Learning with PyTorch

    Latest techniques in deep learning and representation learning

    ... (a minimal version of Anaconda) and several Python packages installed. The following instruction would work as is for Mac or Ubuntu Linux users, Windows users would need to install and work in the Git BASH terminal. JupyterLab has a built-in selectable dark theme, so you only need to install something if you want to use the classic notebook interface.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.