Elixir Data Pipeline Tools

View 116 business solutions

Browse free open source Elixir Data Pipeline Tools and projects below. Use the toggles on the left to filter open source Elixir Data Pipeline Tools by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Pest Control Management Software Icon
    Pest Control Management Software

    Pocomos is a cloud-based field service solution that caters to businesses

    Built for the pest control industry, but also works great for Mosquito Control, Bin Cleaning, Window Washing, Solar Panel Cleaning, and other Home Service Businesses in need of an easy-to-use software that helps you simplify routing, scheduling, communications, payment processing, truck tracking, time tracking, and reporting.
    Learn More
  • 1
    GenStage

    GenStage

    Producer and consumer actors with back-pressure for Elixir

    GenStage is a specification and set of behaviours for building demand-driven data pipelines on the BEAM. It formalizes the roles of producers, consumers, and producer-consumers, using back-pressure so that fast producers don’t overwhelm downstream stages. Developers implement callbacks like handle_demand and handle_events to control how items are emitted, transformed, and consumed across asynchronous boundaries. Because stages are OTP processes, you gain fault tolerance, supervised restarts, and concurrency tuned via configurable demand and partitioning. GenStage underpins higher-level libraries like Flow and Broadway, but it can also be used directly for custom pipelines where timing and throughput matter. Its clear separation of concerns encourages testable, composable stages that can be rearranged as requirements evolve. In production, this leads to predictable, resilient dataflows for event ingestion, batching, and parallel processing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next