Showing 58 open source projects for "python q learning"

View related business solutions
  • Smart Monitoring for Any Network. Powered by Open Source. Icon
    Smart Monitoring for Any Network. Powered by Open Source.

    Trusted by thousands of IT teams worldwide

    NMIS helps with fault, performance, and configuration management. It provides performance graphs, threshold alerting, and detailed notification policies with various methods. NMIS monitors an organization’s IT environment, helps identify and rectify faults, and provides valuable information for IT planning.
    Get a Free Trial
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • 1
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Best-of Python

    Best-of Python

    A ranked list of awesome Python open-source libraries

    This curated list contains 390 awesome open-source projects with a total of 1.4M stars grouped into 28 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! Ranked list of awesome python libraries for web development...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Orange Data Mining

    Orange Data Mining

    Orange: Interactive data analysis

    Open source machine learning and data visualization. Build data analysis workflows visually, with a large, diverse toolbox. Perform simple data analysis with clever data visualization. Explore statistical distributions, box plots and scatter plots, or dive deeper with decision trees, hierarchical clustering, heatmaps, MDS and linear projections. Even your multidimensional data can become sensible in 2D, especially with clever attribute ranking and selections. Interactive data exploration...
    Downloads: 36 This Week
    Last Update:
    See Project
  • 4
    scikit-learn

    scikit-learn

    Machine learning in Python

    scikit-learn is an open source Python module for machine learning built on NumPy, SciPy and matplotlib. It offers simple and efficient tools for predictive data analysis and is reusable in various contexts.
    Downloads: 11 This Week
    Last Update:
    See Project
  • Hackers Hate This: Free WAF for Dummies eBook Icon
    Hackers Hate This: Free WAF for Dummies eBook

    Are your applications exposed to relentless cyber threats? Lock them down with expert know-how.

    Unveil the ultimate guide to Web Application Firewalls (WAFs). Packed with expert tips, real-world solutions, and step-by-step strategies, this eBook from F5 empowers you to shield your web apps and APIs from today’s toughest threats. Don’t wait for a breach – grab your free copy now and fortify your defenses today!
    Get the free eBook
  • 5
    Matplotlib

    Matplotlib

    matplotlib: plotting with Python

    Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard things possible. Matplotlib ships with several add-on toolkits, including 3D plotting with mplot3d, axes helpers in axes_grid1 and axis helpers in axisartist. A large number of third party packages extend and build on Matplotlib functionality, including several higher-level plotting interfaces (seaborn, HoloViews, ggplot
    Downloads: 22 This Week
    Last Update:
    See Project
  • 6
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    XGBoost

    XGBoost

    Scalable and Flexible Gradient Boosting

    XGBoost is an optimized distributed gradient boosting library, designed to be scalable, flexible, portable and highly efficient. It supports regression, classification, ranking and user defined objectives, and runs on all major operating systems and cloud platforms. XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems. XGBoost...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    marimo

    marimo

    A reactive notebook for Python

    marimo is an open-source reactive notebook for Python, reproducible, git-friendly, executable as a script, and shareable as an app. marimo notebooks are reproducible, extremely interactive, designed for collaboration (git-friendly!), deployable as scripts or apps, and fit for modern Pythonista. Run one cell and marimo reacts by automatically running affected cells, eliminating the error-prone chore of managing the notebook state. marimo's reactive UI elements, like data frame GUIs and plots...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    ... the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Luigi

    Luigi

    Python module that helps you build complex pipelines of batch jobs

    ... jobs, dumping data to/from databases, running machine learning algorithms, or anything else. You can build pretty much any task you want, but Luigi also comes with a toolbox of several common task templates that you use. It includes support for running Python mapreduce jobs in Hadoop, as well as Hive, and Pig, jobs. It also comes with file system abstractions for HDFS, and local files that ensures all file system operations are atomic.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    BetaML.jl

    BetaML.jl

    Beta Machine Learning Toolkit

    The Beta Machine Learning Toolkit is a package including many algorithms and utilities to implement machine learning workflows in Julia, Python, R and any other language with a Julia binding. All models are implemented entirely in Julia and are hosted in the repository itself (i.e. they are not wrapper to third-party models). If your favorite option or model is missing, you can try to implement it yourself and open a pull request to share it (see the section Contribute below) or request its...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    TensorFlow.NET

    TensorFlow.NET

    .NET Standard bindings for Google's TensorFlow for developing models

    ... with a powerful Machine Learning tool set without reinventing the wheel. Since the APIs are kept as similar as possible you can immediately adapt any existing TensorFlow code in C# or F# with a zero learning curve. Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning, model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    NVIDIA Merlin is an open-source library that accelerates recommender systems on NVIDIA GPUs. The library enables data scientists, machine learning engineers, and researchers to build high-performing recommenders at scale. Merlin includes tools to address common feature engineering, training, and inference challenges. Each stage of the Merlin pipeline is optimized to support hundreds of terabytes of data, which is all accessible through easy-to-use APIs. For more information, see NVIDIA Merlin...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Recommenders

    Recommenders

    Best practices on recommendation systems

    The Recommenders repository provides examples and best practices for building recommendation systems, provided as Jupyter notebooks. The module reco_utils contains functions to simplify common tasks used when developing and evaluating recommender systems. Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    NannyML is an open-source python library that allows you to estimate post-deployment model performance (without access to targets), detect data drift, and intelligently link data drift alerts back to changes in model performance. Built for data scientists, NannyML has an easy-to-use interface, and interactive visualizations, is completely model-agnostic, and currently supports all tabular classification use cases. NannyML closes the loop with performance monitoring and post deployment data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Cleanlab

    Cleanlab

    The standard data-centric AI package for data quality and ML

    cleanlab helps you clean data and labels by automatically detecting issues in a ML dataset. To facilitate machine learning with messy, real-world data, this data-centric AI package uses your existing models to estimate dataset problems that can be fixed to train even better models. cleanlab cleans your data's labels via state-of-the-art confident learning algorithms, published in this paper and blog. See some of the datasets cleaned with cleanlab at labelerrors.com. This package helps you find...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Kinetic.jl

    Kinetic.jl

    Universal modeling and simulation of fluid mechanics upon ML

    Kinetic is a computational fluid dynamics toolbox written in Julia. It aims to furnish efficient modeling and simulation methodologies for fluid dynamics, augmented by the power of machine learning. Based on differentiable programming, mechanical and neural network models are fused and solved in a unified framework. Simultaneous 1-3 dimensional numerical simulations can be performed on CPUs and GPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next