Showing 54 open source projects for "framework python"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    ConcurrentSim.jl

    ConcurrentSim.jl

    Discrete event process oriented simulation framework written in Julia

    A discrete event process-oriented simulation framework written in Julia inspired by the Python library SimPy. One of the longest-lived Julia packages (originally under the name SimJulia).
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Bytewax

    Bytewax

    Python Stream Processing

    Bytewax is a Python framework that simplifies event and stream processing. Because Bytewax couples the stream and event processing capabilities of Flink, Spark, and Kafka Streams with the friendly and familiar interface of Python, you can re-use the Python libraries you already know and love. Connect data sources, run stateful transformations, and write to various downstream systems with built-in connectors or existing Python libraries.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    Pathway

    Pathway

    Python ETL framework for stream processing, real-time analytics, LLM

    ...Unlike traditional batch processing frameworks, Pathway continuously updates the results of your data logic as new events arrive, functioning more like a database that reacts in real-time. It supports Python, integrates with modern data tools, and offers a deterministic dataflow model to ensure reproducibility and correctness.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    Lithops

    Lithops

    A multi-cloud framework for big data analytics

    Lithops is an open-source serverless computing framework that enables transparent execution of Python functions across multiple cloud providers and on-prem infrastructure. It abstracts cloud providers like IBM Cloud, AWS, Azure, and Google Cloud into a unified interface and turns your Python functions into scalable, event-driven workloads. Lithops is ideal for data processing, ML inference, and embarrassingly parallel workloads, giving you the power of FaaS (Function-as-a-Service) without vendor lock-in. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Union Pandera

    Union Pandera

    Light-weight, flexible, expressive statistical data testing library

    The open-source framework for precision data testing for data scientists and ML engineers. Pandera provides a simple, flexible, and extensible data-testing framework for validating not only your data but also the functions that produce them. A simple, zero-configuration data testing framework for data scientists and ML engineers seeking correctness. Access a comprehensive suite of built-in tests, or easily create your own validation rules for your specific use cases. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Dash

    Dash

    Build beautiful web-based analytic apps, no JavaScript required

    Dash is a Python framework for building beautiful analytical web applications without any JavaScript. Built on top of Plotly.js, React and Flask, Dash easily achieves what an entire team of designers and engineers normally would. It ties modern UI controls and displays such as dropdown menus, sliders and graphs directly to your analytical Python code, and creates exceptional, interactive analytics apps.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 7
    Pyper

    Pyper

    Concurrent Python made simple

    Pyper is a Python-native orchestration and scheduling framework designed for modern data workflows, machine learning pipelines, and any task that benefits from a lightweight DAG-based execution engine. Unlike heavier platforms like Airflow, Pyper aims to remain lean, modular, and developer-friendly, embracing Pythonic conventions and minimizing boilerplate.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Mercury

    Mercury

    Convert Python notebook to web app and share with non-technical users

    Turn Python notebooks to web applications with open-source Mercury framework. Hide code and add interactive widgets. Non-technical users can tweak widgets and execute notebook with new parameters. The core of Mercury is Open Source under AGPLv3. We provide Mercury Pro with additional features, dedicated support and friendly commercial license.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Mara Pipelines

    Mara Pipelines

    A lightweight opinionated ETL framework, halfway between plain scripts

    This package contains a lightweight data transformation framework with a focus on transparency and complexity reduction. Data integration pipelines as code: pipelines, tasks and commands are created using declarative Python code. PostgreSQL as a data processing engine. Extensive web ui. The web browser as the main tool for inspecting, running and debugging pipelines. GNU make semantics. Nodes depend on the completion of upstream nodes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Crawl4AI

    Crawl4AI

    Open-source LLM Friendly Web Crawler & Scraper

    Crawl4AI is a high-performance, AI‑ready web crawler tailored for LLM data ingestion and RAG pipelines. It supports adaptive crawling heuristics (stopping when enough info is gathered), structured markdown output, and high-speed parallel execution. Designed to operate at scale with optional Docker deployment and framework integrations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    gusty

    gusty

    Making DAG construction easier

    gusty allows you to control your Airflow DAGs, Task Groups, and Tasks with greater ease. gusty manages collections of tasks, represented as any number of YAML, Python, SQL, Jupyter Notebook, or R Markdown files. A directory of task files is instantly rendered into a DAG by passing a file path to gusty's create_dag function. gusty also manages dependencies (within one DAG) and external dependencies (dependencies on tasks in other DAGs) for each task file you define. All you have to do is...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    SageMaker Spark Container

    SageMaker Spark Container

    Docker image used to run data processing workloads

    Apache Spark™ is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing. The SageMaker Spark Container is a Docker image used to run batch data processing workloads on Amazon SageMaker using the Apache Spark framework. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DearPyGui

    DearPyGui

    Graphical User Interface Toolkit for Python with minimal dependencies

    ...DPG offers a solid framework for developing scientific, engineering, gaming, data science and other applications that require fast and interactive interfaces. The Tutorials will provide a great overview and links to each topic in the API Reference for more detailed reading. Complete theme and style control. GPU-based rendering and efficient C/C++ code.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    CocoIndex

    CocoIndex

    ETL framework to index data for AI, such as RAG

    CocoIndex is an open-source framework designed for building powerful, local-first semantic search systems. It lets users index and retrieve content based on meaning rather than keywords, making it ideal for modern AI-based search applications. CocoIndex leverages vector embeddings and integrates with various models and frameworks, including OpenAI and Hugging Face, to provide high-quality semantic understanding. It’s built for transparency, ease of use, and local control over your search...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    dbt-re-data

    dbt-re-data

    re_data - fix data issues before your users & CEO would discover them

    re_data is an open-source data reliability framework for the modern data stack. Currently, re_data focuses on observing the dbt project (together with underlaying data warehouse - Postgres, BigQuery, Snowflake, Redshift). Data transformations in re_data are implemented and exposed as models & macros in this dbt package. Gather all relevant outputs about your data in one place using our cloud. Invite your team and debug it easily from there. Go back in time, and see your past metadata. Set up...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    JUDI.jl

    JUDI.jl

    Julia Devito inversion

    JUDI is a framework for large-scale seismic modeling and inversion and is designed to enable rapid translations of algorithms to fast and efficient code that scales to industry-size 3D problems. The focus of the package lies on seismic modeling as well as PDE-constrained optimization such as full-waveform inversion (FWI) and imaging (LS-RTM). Wave equations in JUDI are solved with Devito, a Python domain-specific language for automated finite-difference (FD) computations. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    nb-clean

    nb-clean

    Clean Jupyter notebooks of outputs, metadata, and empty cells

    ...It provides both a Git filter and pre-commit hook to automatically clean notebooks before they're staged, and can also be used with other version control systems, as a command line tool, and as a Python library. It can determine if a notebook is clean or not, which can be used as a check in your continuous integration pipelines. nb-clean can also be used as a pre-commit hook. You may prefer this to the Git filter if your project already uses the pre-commit framework. Note that the Git filter and pre-commit hook work differently, with different effects on your working directory. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Fondant

    Fondant

    Production-ready data processing made easy and shareable

    Fondant is a modular, pipeline-based framework designed to simplify the preparation of large-scale datasets for training machine learning models, especially foundation models. It offers an end-to-end system for ingesting raw data, applying transformations, filtering, and formatting outputs—all while remaining scalable and traceable. Fondant is designed with reproducibility in mind and supports containerized steps using Docker, making it easy to share and reuse data processing components....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    XGBoost

    XGBoost

    Scalable and Flexible Gradient Boosting

    ...It supports regression, classification, ranking and user defined objectives, and runs on all major operating systems and cloud platforms. XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems. XGBoost can be used for Python, Java, Scala, R, C++ and more. It can run on a single machine, Hadoop, Spark, Dask, Flink and most other distributed environments, and is capable of solving problems beyond billions of examples.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 21
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    NVIDIA Merlin is an open-source library that accelerates recommender systems on NVIDIA GPUs. The library enables data scientists, machine learning engineers, and researchers to build high-performing recommenders at scale. Merlin includes tools to address common feature engineering, training, and inference challenges. Each stage of the Merlin pipeline is optimized to support hundreds of terabytes of data, which is all accessible through easy-to-use APIs. For more information, see NVIDIA...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    TensorFlow.NET

    TensorFlow.NET

    .NET Standard bindings for Google's TensorFlow for developing models

    ...Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with...
    Leader badge
    Downloads: 12 This Week
    Last Update:
    See Project
  • 25
    Uranie

    Uranie

    Uranie is CEA's uncertainty analysis platform, based on ROOT

    Uranie is a sensitivity and uncertainty analysis plateform based on the ROOT framework (http://root.cern.ch) . It is developed at CEA, the French Atomic Energy Commission (http://www.cea.fr). It provides various tools for: - data analysis - sampling - statistical modeling - optimisation - sensitivity analysis - uncertainty analysis - running code on high performance computers - etc. Thanks to ROOT, it is easily scriptable in CINT (c++ like syntax) and Python. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next