Showing 6 open source projects for "processing"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    Akka

    Akka

    Build concurrent, distributed, and resilient message-driven apps

    ...Load balancing and adaptive routing across nodes. Event Sourcing and CQRS with Cluster Sharding. Distributed Data for eventual consistency using CRDTs. Asynchronous non-blocking stream processing with backpressure.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 2
    Scio

    Scio

    A Scala API for Apache Beam and Google Cloud Dataflow

    Scio is a Scala API developed by Spotify that builds on Apache Beam to enable expressive batch and streaming data pipelines, optimized for running on Google Cloud Dataflow. Inspired by Spark and Scalding, it provides scalable, type‑safe, and production-grade data processing, with built-in support for BigQuery, Pub/Sub, Cassandra, Elasticsearch, Redis, TensorFlow IO, and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    SnappyData

    SnappyData

    Memory optimized analytics database, based on Apache Spark

    ...SnappyData delivers high throughput, low latency, and high concurrency for a unified analytics workload. By fusing an in-memory hybrid database inside Apache Spark, it provides analytic query processing, mutability/transactions, access to virtually all big data sources and stream processing all in one unified cluster. One common use case for SnappyData is to provide analytics at interactive speeds over large volumes of data with minimal or no pre-processing of the dataset. For instance, there is no need to often pre-aggregate/reduce or generate cubes over your large data sets for ad-hoc visual analytics. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    SZT-bigdata

    SZT-bigdata

    SZT‑bigdata is an open source project

    SZT‑bigdata is an open-source project analyzing real Shenzhen metro (subway) card usage data using big‑data frameworks like Spark, Hadoop, Hive, Kafka, Flink, ClickHouse, HBase, and Elasticsearch. Aimed at exploring transit passenger flow patterns and system optimization using a variety of Scala-based technologies.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 5
    apache spark data pipeline osDQ

    apache spark data pipeline osDQ

    osDQ dedicated to create apache spark based data pipeline using JSON

    This is an offshoot project of open source data quality (osDQ) project https://sourceforge.net/projects/dataquality/ This sub project will create apache spark based data pipeline where JSON based metadata (file) will be used to run data processing , data pipeline , data quality and data preparation and data modeling features for big data. This uses java API of apache spark. It can run in local mode also. Get json example at https://github.com/arrahtech/osdq-spark How to run Unzip the zip file Windows : java -cp .\lib\*;osdq-spark-0.0.1.jar org.arrah.framework.spark.run.TransformRunner -c ....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Cosmos DB Spark

    Cosmos DB Spark

    Apache Spark Connector for Azure Cosmos DB

    ...The connector allows you to easily read to and write from Azure Cosmos DB via Apache Spark DataFrames in Python and Scala. It also allows you to easily create a lambda architecture for batch-processing, stream-processing, and a serving layer while being globally replicated and minimizing the latency involved in working with big data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next