Open Source Scala Data Management Systems

Scala Data Management Systems

View 4078 business solutions

Browse free open source Scala Data Management Systems and projects below. Use the toggles on the left to filter open source Scala Data Management Systems by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 1
    Akka

    Akka

    Build concurrent, distributed, and resilient message-driven apps

    Build powerful reactive, concurrent, and distributed applications more easily. Akka is a toolkit for building highly concurrent, distributed, and resilient message-driven applications for Java and Scala. Actors and Streams let you build systems that scale up, using the resources of a server more efficiently, and out, using multiple servers. Building on the principles of The Reactive Manifesto Akka allows you to write systems that self-heal and stay responsive in the face of failures. Up to 50 million msg/sec on a single machine. Small memory footprint; ~2.5 million actors per GB of heap. Distributed systems without single points of failure. Load balancing and adaptive routing across nodes. Event Sourcing and CQRS with Cluster Sharding. Distributed Data for eventual consistency using CRDTs. Asynchronous non-blocking stream processing with backpressure.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    Cassandra Spark Connector

    Cassandra Spark Connector

    Apache Spark to Apache Cassandra connector

    The Apache Cassandra Spark Connector allows Spark jobs (RDDs or DataFrames/Datasets) to read from and write to Cassandra tables. Compatible with Apache Cassandra (v2.1+), Spark 1.0–3.5, and Scala 2.11–2.13, it supports mapping Cassandra rows to Scala case classes, saving results back to Cassandra, and executing arbitrary CQL within Spark applications.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    SZT-bigdata

    SZT-bigdata

    SZT‑bigdata is an open source project

    SZT‑bigdata is an open-source project analyzing real Shenzhen metro (subway) card usage data using big‑data frameworks like Spark, Hadoop, Hive, Kafka, Flink, ClickHouse, HBase, and Elasticsearch. Aimed at exploring transit passenger flow patterns and system optimization using a variety of Scala-based technologies.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit, and OpenCV. These tools enable powerful and highly-scalable predictive and analytical models for a variety of data sources. SynapseML also brings new networking capabilities to the Spark Ecosystem. With the HTTP on Spark project, users can embed any web service into their SparkML models. For production-grade deployment, the Spark Serving project enables high throughput, sub-millisecond latency web services, backed by your Spark cluster.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Feathr

    Feathr

    A scalable, unified data and AI engineering platform for enterprise

    Feathr is a data and AI engineering platform that is widely used in production at LinkedIn for many years and was open sourced in 2022. It is currently a project under LF AI & Data Foundation. Define data and feature transformations based on raw data sources (batch and streaming) using Pythonic APIs. Register transformations by names and get transformed data(features) for various use cases including AI modeling, compliance, go-to-market and more. Share transformations and data(features) across team and company. Feathr is particularly useful in AI modeling where it automatically computes your feature transformations and joins them to your training data, using point-in-time-correct semantics to avoid data leakage, and supports materializing and deploying your features for use online in production.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Scio

    Scio

    A Scala API for Apache Beam and Google Cloud Dataflow

    Scio is a Scala API developed by Spotify that builds on Apache Beam to enable expressive batch and streaming data pipelines, optimized for running on Google Cloud Dataflow. Inspired by Spark and Scalding, it provides scalable, type‑safe, and production-grade data processing, with built-in support for BigQuery, Pub/Sub, Cassandra, Elasticsearch, Redis, TensorFlow IO, and more.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    apache spark data pipeline osDQ

    apache spark data pipeline osDQ

    osDQ dedicated to create apache spark based data pipeline using JSON

    This is an offshoot project of open source data quality (osDQ) project https://sourceforge.net/projects/dataquality/ This sub project will create apache spark based data pipeline where JSON based metadata (file) will be used to run data processing , data pipeline , data quality and data preparation and data modeling features for big data. This uses java API of apache spark. It can run in local mode also. Get json example at https://github.com/arrahtech/osdq-spark How to run Unzip the zip file Windows : java -cp .\lib\*;osdq-spark-0.0.1.jar org.arrah.framework.spark.run.TransformRunner -c .\example\samplerun.json Mac UNIX java -cp ./lib/*:./osdq-spark-0.0.1.jar org.arrah.framework.spark.run.TransformRunner -c ./example/samplerun.json For those on windows, you need to have hadoop distribtion unzipped on local drive and HADOOP_HOME set. Also copy winutils.exe from here into HADOOP_HOME\bin
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    rocket-bi

    rocket-bi

    An open-source web-based self-service BI for analytical databases

    Rocket.BI is a free, open-source, web-based business intelligence solution specifically designed for analytical databases. It enables data analysts and business users alike to easily integrate different data sources, perform advanced data analysis, ad hoc, and more. With an easy-to-use editor, you can create personalized reports, build interactive business dashboards and generate actionable business insights. Rocket.BI also allows collaboration as working together with other people in the organization.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Cosmos DB Spark

    Cosmos DB Spark

    Apache Spark Connector for Azure Cosmos DB

    Azure Cosmos DB Spark is the official connector for Azure CosmosDB and Apache Spark. The connector allows you to easily read to and write from Azure Cosmos DB via Apache Spark DataFrames in Python and Scala. It also allows you to easily create a lambda architecture for batch-processing, stream-processing, and a serving layer while being globally replicated and minimizing the latency involved in working with big data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 10
    DISTOD

    DISTOD

    Distributed discovery of bidirectional order dependencies

    The DISTOD data profiling algorithm is a distributed algorithm to discover bidirectional order dependencies (in set-based form) from relational data. DISTOD is based on the single-threaded FASTOD-BID algorithm [1], but DISTOD scales elastically to many machines outperforming FASTOD-BID by up to orders of magnitude. Bidirectional order dependencies (bODs) capture order relationships between lists of attributes in a relational table. They can express that, for example, sorting books by publication date in ascending order also sorts them by age in descending order. The knowledge about order relationships is useful for many data management tasks, such as query optimization, data cleaning, or consistency checking. Because the bODs of a specific dataset are usually not explicitly given, they need to be discovered. The discovery of all minimal bODs (in set-based canonical form) is a task with exponential complexity in the number of attributes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    SnappyData

    SnappyData

    Memory optimized analytics database, based on Apache Spark

    SnappyData (aka TIBCO ComputeDB) is a distributed, in-memory optimized analytics database. SnappyData delivers high throughput, low latency, and high concurrency for a unified analytics workload. By fusing an in-memory hybrid database inside Apache Spark, it provides analytic query processing, mutability/transactions, access to virtually all big data sources and stream processing all in one unified cluster. One common use case for SnappyData is to provide analytics at interactive speeds over large volumes of data with minimal or no pre-processing of the dataset. For instance, there is no need to often pre-aggregate/reduce or generate cubes over your large data sets for ad-hoc visual analytics. This is made possible by smartly managing data in memory, dynamically generating code using vectorization optimizations, and maximizing the potential of modern multi-core CPUs. SnappyData enables complex processing on large data sets in sub-second timeframes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12

    Waterloo

    Java-based scientific graphics

    Java-based scientific graphics with support for Java, Groovy, MATLAB, Python, the R statistical environment, Scala and SciLab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Java OpenCL Process Virtual Machine. Spring IoC based framework for complex data analysis with OpenCL computing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.