Open Source Python Data Management Systems - Page 3

Python Data Management Systems

View 3989 business solutions

Browse free open source Python Data Management Systems and projects below. Use the toggles on the left to filter open source Python Data Management Systems by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    DataChain

    DataChain

    AI-data warehouse to enrich, transform and analyze unstructured data

    Datachain enables multimodal API calls and local AI inferences to run in parallel over many samples as chained operations. The resulting datasets can be saved, versioned, and sent directly to PyTorch and TensorFlow for training. Datachain can persist features of Python objects returned by AI models, and enables vectorized analytical operations over them. The typical use cases are data curation, LLM analytics and validation, image segmentation, pose detection, and GenAI alignment. Datachain is especially helpful if batch operations can be optimized – for instance, when synchronous API calls can be parallelized or where an LLM API offers batch processing.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Ethereum ETL

    Ethereum ETL

    Python scripts for ETL (extract, transform and load) jobs for Ethereum

    Python scripts for ETL (extract, transform and load) jobs for Ethereum blocks, transactions, ERC20 / ERC721 tokens, transfers, receipts, logs, contracts, internal transactions. Data is available in Google BigQuery. Ethereum ETL lets you convert blockchain data into convenient formats like CSVs and relational databases.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    Metacrafter

    Metacrafter

    Metadata and data identification tool and Python library

    Python command line tool and Python engine to label table fields and fields in data files. It could help to find meaningful data in your tables and data files or to find Personal identifiable information (PII). Metacrafter is a rule-based tool that helps to label fields of the tables in databases. It scans table and finds person names, surnames, midnames, PII data, basic identifiers like UUID/GUID. These rules written as .yaml files and could be easily extended.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the SDV project, or input your own data. Choose from any of the SDV synthesizers and baselines. Or write your own custom machine learning model. In addition to performance and memory usage, you can also measure synthetic data quality and privacy through a variety of metrics. Install SDGym using pip or conda. We recommend using a virtual environment to avoid conflicts with other software on your device.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Powering the best of the internet | Fastly Icon
    Powering the best of the internet | Fastly

    Fastly's edge cloud platform delivers faster, safer, and more scalable sites and apps to customers.

    Ensure your websites, applications and services can effortlessly handle the demands of your users with Fastly. Fastly’s portfolio is designed to be highly performant, personalized and secure while seamlessly scaling to support your growth.
    Try for free
  • 5
    miepython

    miepython

    Mie scattering of light by perfect spheres

    miepython is a pure Python module to calculate light scattering for non-absorbing, partially-absorbing, or perfectly-conducting spheres. Mie theory is used, following the procedure described by Wiscombe. This code has been validated against his results. This code provides functions for calculating the extinction efficiency, scattering efficiency, backscattering, and scattering asymmetry. Moreover, a set of angles can be given to calculate the scattering for a sphere at each of those angles.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with graphical user interfaces and/or via the command-line. See our YouTube channel for tutorial videos via the homepage. The applications are all built out of a uniform user-interface framework that provides a very high level (Qt) interface to powerful image processing and scientific visualisation algorithms from the Insight Toolkit (ITK) and Visualisation Toolkit (VTK). The framework allows one to build stand-alone medical imaging applications quickly and easily.
    Leader badge
    Downloads: 105 This Week
    Last Update:
    See Project
  • 7
    LabPlot

    LabPlot

    Data Visualization and Analysis

    LabPlot is a FREE, open source and cross-platform Data Visualization and Analysis software accessible to everyone.
    Downloads: 26 This Week
    Last Update:
    See Project
  • 8
    GDL - GNU Data Language, a free IDL (Interactive Data Language, see http://ittvis.com/idl/) compatible incremental compiler.
    Leader badge
    Downloads: 22 This Week
    Last Update:
    See Project
  • 9
    BertViz

    BertViz

    BertViz: Visualize Attention in NLP Models (BERT, GPT2, BART, etc.)

    BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models. BertViz extends the Tensor2Tensor visualization tool by Llion Jones, providing multiple views that each offer a unique lens into the attention mechanism. The head view visualizes attention for one or more attention heads in the same layer. It is based on the excellent Tensor2Tensor visualization tool. The model view shows a bird's-eye view of attention across all layers and heads. The neuron view visualizes individual neurons in the query and key vectors and shows how they are used to compute attention.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Every Door

    Every Door

    A dedicated app for collecting thousands of POI for OpenStreetMap

    The best OpenStreetMap editor for POIs and entrances. The best app for on-the-ground surveying for OpenStreetMap! Add shops and amenities, survey benches and trees, collect addresses, or use them as walking papers. This editor does not make you think. Just go to a mall, and start Every Door. You'll see mapped shops around you: tap on the checkmark for any that are still there, and add shops that are not on the map. That's the entire process: you can keep your entire town up-to-date thanks to this simple editor. There is also a micromapping mode for verifying and adding benches and street lamps. And an entrance mode for adding building attributes and entrances, which are merged automatically into building contours.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Kale

    Kale

    Kubeflow’s superfood for Data Scientists

    KALE (Kubeflow Automated pipeLines Engine) is a project that aims at simplifying the Data Science experience of deploying Kubeflow Pipelines workflows. Kubeflow is a great platform for orchestrating complex workflows on top Kubernetes and Kubeflow Pipeline provides the mean to create reusable components that can be executed as part of workflows. The self-service nature of Kubeflow make it extremely appealing for Data Science use, at it provides an easy access to advanced distributed jobs orchestration, re-usability of components, Jupyter Notebooks, rich UIs and more. Still, developing and maintaining Kubeflow workflows can be hard for data scientists, who may not be experts in working orchestration platforms and related SDKs. Additionally, data science often involve processes of data exploration, iterative modelling and interactive environments (mostly Jupyter notebook).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    pydna

    pydna

    Clone with Python! Data structures for double stranded DNA

    Clone with Python! Data structures for double stranded DNA & simulation of homologous recombination, Gibson assembly, cut & paste cloning. Planning genetic constructs with many parts and assembly steps, such as recombinant metabolic pathways, are often difficult to properly document as is evident from the poor state of documentation in the scientific literature. The pydna python package provide a human-readable formal description of cloning and genetic assembly strategies in Python which allow for simulation and verification. Pydna can be used as executable documentation for cloning.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    QUAST

    QUAST

    Quality Assessment Tool for Genome Assemblies

    QUAST performs fast and convenient quality evaluation and comparison of genome assemblies. It is maintained by the Gurevich lab at HIPS (https://helmholtz-hips.de/en/hmsb). For the most up-to-date description, please visit http://quast.sf.net. Below are just some highlights. QUAST computes several well-known metrics, including contig accuracy, the number of genes discovered, N50, and others, as well as introducing new ones, like NA50 (see details in the paper and manual). A comprehensive analysis results in summary tables (in plain text, tab-separated, and LaTeX formats) and colorful plots. The tool also produces web-based reports condensing all information in one easy-to-navigate file. QUAST and its three follow-up papers (MetaQUAST, Icarus, QUAST-LG) papers were published in Bioinformatics; the last paper (WebQUAST) is out in Nucl Acid Research.
    Leader badge
    Downloads: 67 This Week
    Last Update:
    See Project
  • 14
    PyMOL Molecular Graphics System

    PyMOL Molecular Graphics System

    PyMOL is an OpenGL based molecular visualization system

    The Open-Source PyMOL repository has been moved to github: https://github.com/schrodinger/pymol-open-source We still use the pymol-users mailing list here on sourceforge. Please subscribe for community support: https://pymol.org/maillist (Note: SourceForge email newsletter and special offers are optional and can be unchecked) The PyMOL community wiki has its own home: https://pymolwiki.org/
    Downloads: 62 This Week
    Last Update:
    See Project
  • 15
    A Python interface to the gnuplot plotting program.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 16
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative) are an amazing technology that will power many of future ML use cases. A large set of these technologies are being deployed into businesses (the real world) in what we consider a production setting.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments and other workflows with ClearML powerful and versatile set of classes and methods. The ClearML Server storing experiment, model, and workflow data, and supports the Web UI experiment manager, and ML-Ops automation for reproducibility and tuning. It is available as a hosted service and open source for you to deploy your own ClearML Server. The ClearML Agent for ML-Ops orchestration, experiment and workflow reproducibility, and scalability.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    Datasette

    Datasette

    An open source multi-tool for exploring and publishing data

    Datasette is a tool for exploring and publishing data. It helps people take data of any shape or size, analyze and explore it, and publish it as an interactive website and accompanying API. Datasette is aimed at data journalists, museum curators, archivists, local governments, scientists, researchers and anyone else who has data that they wish to share with the world. It is part of a wider ecosystem of tools and plugins dedicated to making working with structured data as productive as possible. Try a demo and explore 33,000 power plants around the world, then take a look at some other examples of Datasette in action. Then read how to get started with Datasette, subscribe to the monthly-ish newsletter and consider signing up for office hours for an in-person conversation about the project.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Mage.ai

    Mage.ai

    Build, run, and manage data pipelines for integrating data

    Open-source data pipeline tool for transforming and integrating data. The modern replacement for Airflow. Effortlessly integrate and synchronize data from 3rd party sources. Build real-time and batch pipelines to transform data using Python, SQL, and R. Run, monitor, and orchestrate thousands of pipelines without losing sleep. Have you met anyone who said they loved developing in Airflow? That’s why we designed an easy developer experience that you’ll enjoy. Each step in your pipeline is a standalone file containing modular code that’s reusable and testable with data validations. No more DAGs with spaghetti code. Start developing locally with a single command or launch a dev environment in your cloud using Terraform. Write code in Python, SQL, or R in the same data pipeline for ultimate flexibility.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Modin

    Modin

    Scale your Pandas workflows by changing a single line of code

    Scale your pandas workflow by changing a single line of code. Modin uses Ray, Dask or Unidist to provide an effortless way to speed up your pandas notebooks, scripts, and libraries. Unlike other distributed DataFrame libraries, Modin provides seamless integration and compatibility with existing pandas code. Even using the DataFrame constructor is identical. It is not necessary to know in advance the available hardware resources in order to use Modin. Additionally, it is not necessary to specify how to distribute or place data. Modin acts as a drop-in replacement for pandas, which means that you can continue using your previous pandas notebooks, unchanged, while experiencing a considerable speedup thanks to Modin, even on a single machine. Once you’ve changed your import statement, you’re ready to use Modin just like you would pandas.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Pathway

    Pathway

    Python ETL framework for stream processing, real-time analytics, LLM

    Pathway is an open-source framework designed for building real-time data applications using reactive and declarative paradigms. It enables seamless integration of live data streams and structured data into analytical pipelines with minimal latency. Pathway is especially well-suited for scenarios like financial analytics, IoT, fraud detection, and logistics, where high-velocity and continuously changing data is the norm. Unlike traditional batch processing frameworks, Pathway continuously updates the results of your data logic as new events arrive, functioning more like a database that reacts in real-time. It supports Python, integrates with modern data tools, and offers a deterministic dataflow model to ensure reproducibility and correctness.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Population Shift Monitoring

    Population Shift Monitoring

    Monitor the stability of a Pandas or Spark dataframe

    popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets. popmon creates histograms of features binned in time-slices, and compares the stability of the profiles and distributions of those histograms using statistical tests, both over time and with respect to a reference. It works with numerical, ordinal, categorical features, and the histograms can be higher-dimensional, e.g. it can also track correlations between any two features. popmon can automatically flag and alert on changes observed over time, such as trends, shifts, peaks, outliers, anomalies, changing correlations, etc, using monitoring business rules. Advanced users can leverage popmon's modular data pipeline to customize their workflow. Visualization of the pipeline can be useful when debugging or for didactic purposes. There is a script included with the package that you can use.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    PyVista

    PyVista

    3D plotting and mesh analysis through a streamlined interface

    3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK). PyVista is a helper module for the Visualization Toolkit (VTK) that takes a different approach on interfacing with VTK through NumPy and direct array access. This package provides a Pythonic, well-documented interface exposing VTK’s powerful visualization backend to facilitate rapid prototyping, analysis, and visual integration of spatially referenced datasets. This module can be used for scientific plotting for presentations and research papers as well as a supporting module for other mesh-dependent Python modules. Easily integrate with NumPy and create a variety of geometries and plot them. You could use any geometry to create your glyphs, or even plot the points directly. Direct access to mesh analysis and transformation routines. Intuitive plotting routines with matplotlib similar syntax.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Vaex

    Vaex

    Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python

    Data science solutions, insights, dashboards, machine learning, deployment. We start at 100GB. Vaex is a high-performance Python library for lazy Out-of-Core data frames (similar to Pandas), to visualize and explore big tabular datasets. It calculates statistics such as mean, sum, count, standard deviation etc, on an N-dimensional grid for more than a billion (10^9) samples/rows per second. Visualization is done using histograms, density plots and 3d volume rendering, allowing interactive exploration of big data. Vaex uses memory mapping, zero memory copy policy and lazy computations for best performance (no memory wasted). Cut development cut development time by 80%. Your prototype is your solution. Create automatic pipelines for any model.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Wally

    Wally

    Distributed Stream Processing

    Wally is a fast-stream-processing framework. Wally makes it easy to react to data in real-time. By eliminating infrastructure complexity, going from prototype to production has never been simpler. When we set out to build Wally, we had several high-level goals in mind. Create a dependable and resilient distributed computing framework. Take care of the complexities of distributed computing "plumbing," allowing developers to focus on their business logic. Provide high-performance & low-latency data processing. Be portable and deploy easily (i.e., run on-prem or any cloud). Manage in-memory state for the application. Allow applications to scale as needed, even when they are live and up-and-running. The primary API for Wally is written in Pony. Wally applications are written using this Pony API.
    Downloads: 2 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.