Showing 471 open source projects for "compiler python linux"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    dbt-re-data

    dbt-re-data

    re_data - fix data issues before your users & CEO would discover them

    re_data is an open-source data reliability framework for the modern data stack. Currently, re_data focuses on observing the dbt project (together with underlaying data warehouse - Postgres, BigQuery, Snowflake, Redshift). Data transformations in re_data are implemented and exposed as models & macros in this dbt package. Gather all relevant outputs about your data in one place using our cloud. Invite your team and debug it easily from there. Go back in time, and see your past metadata. Set up...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Dagster

    Dagster

    An orchestration platform for the development, production

    Dagster is an orchestration platform for the development, production, and observation of data assets. Dagster as a productivity platform: With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early. Dagster as a robust orchestration engine: Put your pipelines into production with a robust...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    Panda-Helper

    Panda-Helper

    Panda-Helper: Data profiling utility for Pandas DataFrames and Series

    Panda-Helper is a simple data-profiling utility for Pandas DataFrames and Series. Assess data quality and usefulness with minimal effort. Quickly perform initial data exploration, so you can move on to more in-depth analysis.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    tsfresh

    tsfresh

    Automatic extraction of relevant features from time series

    tsfresh is a python package. It automatically calculates a large number of time series characteristics, the so called features. tsfresh is used to to extract characteristics from time series. Without tsfresh, you would have to calculate all characteristics by hand. With tsfresh this process is automated and all your features can be calculated automatically. Further tsfresh is compatible with pythons pandas and scikit-learn APIs, two important packages for Data Science endeavours in python....
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    nb-clean

    nb-clean

    Clean Jupyter notebooks of outputs, metadata, and empty cells

    nb-clean cleans Jupyter notebooks of cell execution counts, metadata, outputs, and (optionally) empty cells, preparing them for committing to version control. It provides both a Git filter and pre-commit hook to automatically clean notebooks before they're staged, and can also be used with other version control systems, as a command line tool, and as a Python library. It can determine if a notebook is clean or not, which can be used as a check in your continuous integration pipelines....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Circuitscape.jl

    Circuitscape.jl

    Algorithms from circuit theory to predict connectivity

    Circuitscape is an open-source program that uses circuit theory to model connectivity in heterogeneous landscapes. Its most common applications include modeling the movement and gene flow of plants and animals, as well as identifying areas important for connectivity conservation. The new Circuitscape is built entirely in the Julia language, a new programming language for technical computing. Julia is built from the ground up to be fast. As such, this offers a number of advantages over the...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    whylogs

    whylogs

    The open standard for data logging

    whylogs is an open-source library for logging any kind of data. With whylogs, users are able to generate summaries of their datasets (called whylogs profiles) which they can use to track changes in their dataset Create data constraints to know whether their data looks the way it should. Quickly visualize key summary statistics about their datasets. whylogs profiles are the core of the whylogs library. They capture key statistical properties of data, such as the distribution (far beyond...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    TIGRE

    TIGRE

    TIGRE: Tomographic Iterative GPU-based Reconstruction Toolbox

    TIGRE is an open-source toolbox for fast and accurate 3D tomographic reconstruction for any geometry. Its focus is on iterative algorithms for improved image quality that have all been optimized to run on GPUs (including multi-GPUs) for improved speed. It combines the higher-level abstraction of MATLAB or Python with the performance of CUDA at a lower level in order to make it both fast and easy to use. TIGRE is free to download and distribute: use it, modify it, add to it, and share it. Our...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Graphs.jl

    Graphs.jl

    An optimized graphs package for the Julia programming language

    The goal of Graphs.jl is to offer a performant platform for network and graph analysis in Julia, following the example of libraries such as NetworkX in Python. Offers a set of simple, concrete graph implementations – SimpleGraph (for undirected graphs) and SimpleDiGraph (for directed graphs), an API for the development of more sophisticated graph implementations under the AbstractGraph type, and a large collection of graph algorithms with the same requirements as this API.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Timesketch

    Timesketch

    Collaborative forensic timeline analysis

    Timesketch is a collaborative forensic timeline analysis platform used to investigate security incidents by turning diverse evidence into a single, searchable chronology. Analysts ingest logs and artifacts from many sources—endpoints, servers, cloud services—and Timesketch normalizes them into events on a unified timeline. Powerful search, aggregations, and saved views help you pivot quickly, highlight anomalies, and preserve investigative steps for later review. The system supports tagging,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Siddhi Core Libraries

    Siddhi Core Libraries

    Stream Processing and Complex Event Processing Engine

    Fully open source, cloud-native, scalable, micro streaming, and complex event processing system capable of building event-driven applications for use cases such as real-time analytics, data integration, notification management, and adaptive decision-making. Event processing logic can be written using Streaming SQL queries via graphical and source editors, to capture events from diverse data sources, process and analyze them, integrate with multiple services and data stores, and publish...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Modin

    Modin

    Scale your Pandas workflows by changing a single line of code

    Scale your pandas workflow by changing a single line of code. Modin uses Ray, Dask or Unidist to provide an effortless way to speed up your pandas notebooks, scripts, and libraries. Unlike other distributed DataFrame libraries, Modin provides seamless integration and compatibility with existing pandas code. Even using the DataFrame constructor is identical. It is not necessary to know in advance the available hardware resources in order to use Modin. Additionally, it is not necessary to...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Julia VS Code

    Julia VS Code

    Julia extension for Visual Studio Code

    This VS Code extension provides support for the Julia programming language. We build on Julia’s unique combination of ease-of-use and performance. Beginners and experts can build better software more quickly, and get to a result faster. With a completely live environment, Julia for VS Code aims to take the frustration and guesswork out of programming and put the fun back in. A hybrid “canvas programming” style combines the exploratory power of a notebook with the productivity and static...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    AWS Data Wrangler

    AWS Data Wrangler

    Pandas on AWS, easy integration with Athena, Glue, Redshift, etc.

    An AWS Professional Service open-source python initiative that extends the power of Pandas library to AWS connecting DataFrames and AWS data-related services. Easy integration with Athena, Glue, Redshift, Timestream, OpenSearch, Neptune, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON, and EXCEL). Built on top of other open-source projects like Pandas, Apache Arrow and Boto3, it offers abstracted functions to execute...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Fondant

    Fondant

    Production-ready data processing made easy and shareable

    Fondant is a modular, pipeline-based framework designed to simplify the preparation of large-scale datasets for training machine learning models, especially foundation models. It offers an end-to-end system for ingesting raw data, applying transformations, filtering, and formatting outputs—all while remaining scalable and traceable. Fondant is designed with reproducibility in mind and supports containerized steps using Docker, making it easy to share and reuse data processing components....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Elementary

    Elementary

    Open-source data observability for analytics engineers

    Elementary is an open-source data observability solution for data & analytics engineers. Monitor your dbt project and data in minutes, and be the first to know of data issues. Gain immediate visibility, detect data issues, send actionable alerts, and understand the impact and root cause. Generate a data observability report, host it or share with your team. Monitoring of data quality metrics, freshness, volume and schema changes, including anomaly detection. Elementary data monitors are...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    XGBoost

    XGBoost

    Scalable and Flexible Gradient Boosting

    XGBoost is an optimized distributed gradient boosting library, designed to be scalable, flexible, portable and highly efficient. It supports regression, classification, ranking and user defined objectives, and runs on all major operating systems and cloud platforms. XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems....
    Downloads: 5 This Week
    Last Update:
    See Project
  • 23
    PipeRider

    PipeRider

    Code review for data in dbt

    PipeRider automatically compares your data to highlight the difference in impacted downstream dbt models so you can merge your Pull Requests with confidence. PipeRider can profile your dbt models and obtain information such as basic data composition, quantiles, histograms, text length, top categories, and more. PipeRider can integrate with dbt metrics and present the time-series data of metrics in the report. PipeRider generates a static HTML report each time it runs, which can be viewed...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    NVIDIA Merlin is an open-source library that accelerates recommender systems on NVIDIA GPUs. The library enables data scientists, machine learning engineers, and researchers to build high-performing recommenders at scale. Merlin includes tools to address common feature engineering, training, and inference challenges. Each stage of the Merlin pipeline is optimized to support hundreds of terabytes of data, which is all accessible through easy-to-use APIs. For more information, see NVIDIA...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative)...
    Downloads: 0 This Week
    Last Update:
    See Project