Showing 35 open source projects for "ml-so1v"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 1
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    ClearML

    ClearML

    Streamline your ML workflow

    ...It is available as a hosted service and open source for you to deploy your own ClearML Server. The ClearML Agent for ML-Ops orchestration, experiment and workflow reproducibility, and scalability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Cleanlab

    Cleanlab

    The standard data-centric AI package for data quality and ML

    ...This package helps you find label issues and other data issues, so you can train reliable ML models. All features of cleanlab work with any dataset and any model. Yes, any model: PyTorch, Tensorflow, Keras, JAX, HuggingFace, OpenAI, XGBoost, scikit-learn, etc. If you use a sklearn-compatible classifier, all cleanlab methods work out-of-the-box.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    GoldenCheetah

    GoldenCheetah

    Performance Software for Cyclists, Runners, Triathletes and Coaches

    Analyze using summary metrics like BikeStress, TRIMP, or RPE. Extract insight via models like Critical Power and W'bal. Track and predict performance using models like Banister and PMC. Optimize aerodynamics using Virtual Elevation. Train indoors with ANT and BTLE trainers. Upload and Download with many cloud services including Strava, Withings, and Today's Plan. Import and export data to and from a wide range of bike computers and file formats. Track body measures, and equipment use and set...
    Downloads: 6 This Week
    Last Update:
    See Project
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 5
    Covalent workflow

    Covalent workflow

    Pythonic tool for running machine-learning/high performance workflows

    ...Covalent overcomes computational and operational challenges inherent in AI/ML experimentation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    LossFunctions.jl

    LossFunctions.jl

    Julia package of loss functions for machine learning

    ...As such, it is a part of the JuliaML ecosystem. The sole purpose of this package is to provide an efficient and extensible implementation of various loss functions used throughout Machine Learning (ML). It is thus intended to serve as a special purpose back-end for other ML libraries that require losses to accomplish their tasks. To that end we provide a considerable amount of carefully implemented loss functions, as well as an API to query their properties (e.g. convexity). Furthermore, we expose methods to compute their values, derivatives, and second derivatives for single observations as well as arbitrarily sized arrays of observations. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Union Pandera

    Union Pandera

    Light-weight, flexible, expressive statistical data testing library

    The open-source framework for precision data testing for data scientists and ML engineers. Pandera provides a simple, flexible, and extensible data-testing framework for validating not only your data but also the functions that produce them. A simple, zero-configuration data testing framework for data scientists and ML engineers seeking correctness. Access a comprehensive suite of built-in tests, or easily create your own validation rules for your specific use cases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning, model selection/ensembling, architecture search, and data processing. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Turn more customers into advocates. Icon
    Turn more customers into advocates.

    Fight skyrocketing paid media costs by turning your customers into a primary vehicle for acquisition, awareness, and activation with Extole.

    The platform's advanced capabilities ensure companies get the most out of their referral programs. Leverage custom events, profiles, and attributes to enable dynamic, audience-specific referral experiences. Use first-party data to tailor customer segment messaging, rewards, and engagement strategies. Use our flexible APIs to build management capabilities and consumer experiences–headlessly or hybrid. We have all the tools you need to build scalable, secure, and high-performing referral programs.
    Learn More
  • 10
    sparklyr

    sparklyr

    R interface for Apache Spark

    sparklyr is an R package that provides seamless interfacing with Apache Spark clusters—either local or remote—while letting users write code in familiar R paradigms. It supplies a dplyr-compatible backend, Spark machine learning pipelines, SQL integration, and I/O utilities to manipulate and analyze large datasets distributed across cluster environments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Pyper

    Pyper

    Concurrent Python made simple

    Pyper is a Python-native orchestration and scheduling framework designed for modern data workflows, machine learning pipelines, and any task that benefits from a lightweight DAG-based execution engine. Unlike heavier platforms like Airflow, Pyper aims to remain lean, modular, and developer-friendly, embracing Pythonic conventions and minimizing boilerplate. It focuses on local development ergonomics and seamless transition to production environments, making it ideal for small teams and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Lithops

    Lithops

    A multi-cloud framework for big data analytics

    ...It abstracts cloud providers like IBM Cloud, AWS, Azure, and Google Cloud into a unified interface and turns your Python functions into scalable, event-driven workloads. Lithops is ideal for data processing, ML inference, and embarrassingly parallel workloads, giving you the power of FaaS (Function-as-a-Service) without vendor lock-in. It also supports hybrid cloud setups, object storage access, and simple integration with Jupyter notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    whylogs

    whylogs

    The open standard for data logging

    whylogs is an open-source library for logging any kind of data. With whylogs, users are able to generate summaries of their datasets (called whylogs profiles) which they can use to track changes in their dataset Create data constraints to know whether their data looks the way it should. Quickly visualize key summary statistics about their datasets. whylogs profiles are the core of the whylogs library. They capture key statistical properties of data, such as the distribution (far beyond...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ODD Platform

    ODD Platform

    First open-source data discovery and observability platform

    Unlock the power of big data with OpenDataDiscovery Platform. Experience seamless end-to-end insights, powered by unprecedented observability and trust - from ingestion to production - while building your ideal tech stack! Democratize data and accelerate insights. Find data that fits your use case and discover hints left by your peers to leverage existing knowledge. Explore tags, ownership details, links to other sources and other information to shorten and simplify data discovery phase....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where the container is deployed. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Datapipe

    Datapipe

    Real-time, incremental ETL library for ML with record-level depend

    Datapipe is a real-time, incremental ETL library for Python with record-level dependency tracking. Datapipe is designed to streamline the creation of data processing pipelines. It excels in scenarios where data is continuously changing, requiring pipelines to adapt and process only the modified data efficiently. This library tracks dependencies for each record in the pipeline, ensuring minimal and efficient data processing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    json-scada

    A portable SCADA/IoT platform centered on the MongoDB database server.

    Standard IT tools applied to SCADA/IoT (MongoDB, PostgreSQL/TimescaleDB,Node.js, C#, Golang, Grafana, etc.). MongoDB as the real-time core database, persistence layer, config store, SOE historian. Portability and interoperability over Linux, Windows, x86/64, ARM. Horizontal scalability, from a single computer to big clusters (MongoDB-sharding), Bare Metal, Docker containers, VM, cloud, or hybrid deployments. Unlimited tags, servers, and users. HTML5 Web interface. UTF-8/I18N. Protocols:...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    PANDORA

    PANDORA

    Revolutionizing Biomedical Research with Advanced Machine Learning

    PANDORA is a machine learning (ML) tool that can be used to integrate various data types, including clinical, transcriptome and microbiome data and find connections in large datasets. PANDORA can be easily installed using Docker, a pre-built version of the software can be pulled from DockerHub. In order to run a test instance of PANDORA, users will first need to prepare their local environment by downloading, installing, and configuring Docker. genular is a community behind SIMON an open-source Machine Learning KnowledgeDiscovery software, built by a vibrant community of people just like you! ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Kinetic.jl

    Kinetic.jl

    Universal modeling and simulation of fluid mechanics upon ML

    Kinetic is a computational fluid dynamics toolbox written in Julia. It aims to furnish efficient modeling and simulation methodologies for fluid dynamics, augmented by the power of machine learning. Based on differentiable programming, mechanical and neural network models are fused and solved in a unified framework. Simultaneous 1-3 dimensional numerical simulations can be performed on CPUs and GPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    DataGym.ai

    DataGym.ai

    Open source annotation and labeling tool for image and video assets

    DATAGYM enables data scientists and machine learning experts to label images up to 10x faster. AI-assisted annotation tools reduce manual labeling effort, give you more time to finetune ML models and speed up your go to market of new products. Accelerate your computer vision projects by cutting down data preparation time up to 50%. A machine learning model is only as good as its training data. DATAGYM is an end-to-end workbench to create, annotate, manage, and export the right training data for your computer vision models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Self-learning-Computer-Science

    Self-learning-Computer-Science

    Resources to learn computer science in your spare time

    Self-learning Computer Science is a curated, open-source guide repository designed to help learners independently study computer science topics using high-quality university-level resources. The author (an undergraduate CS student) assembled links to courses from institutions like MIT, UC Berkeley, Stanford, etc., covering mathematics, programming, data structures/algorithms, computer architecture, machine learning, software engineering and more. It’s aimed at learners who find traditional...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    MLDataUtils.jl

    MLDataUtils.jl

    Utility package for generating, loading, and processing ML datasets

    This package is designed to be the end-user facing front-end to all the data related functionality that is spread out across the JuliaML ecosystem. Most of the following sub-categories are covered by a single back-end package that is specialized on that specific problem. Consequently, if one of the following topics is of special interest to you, make sure to check out the corresponding documentation of that package.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Data Science Notes

    Data Science Notes

    Curated collection of data science learning materials

    Data Science Notes is a large, curated collection of data science learning materials, with explanations, code snippets, and structured notes across the typical end-to-end workflow. It spans foundational math and statistics through data wrangling, visualization, machine learning, and practical project organization. The content emphasizes hands-on understanding by pairing narrative notes with runnable examples, making it useful for both self-study and classroom settings. Because it aggregates...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next