With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.
You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Keep company data safe with Chrome Enterprise
Protect your business with AI policies and data loss prevention in the browser
Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
High accuracy derivatives, estimated via numerical finite differences
FiniteDifferences.jl estimates derivatives with finite differences. See also the Python package FDM. FiniteDiff.jl and FiniteDifferences.jl are similar libraries: both calculate approximate derivatives numerically. You should definitely use one or the other, rather than the legacy Calculus.jl finite differencing, or reimplementing it yourself. At some point in the future, they might merge, or one might depend on the other.
Universal modeling and simulation of fluid mechanics upon ML
Kinetic is a computational fluid dynamics toolbox written in Julia. It aims to furnish efficient modeling and simulation methodologies for fluid dynamics, augmented by the power of machine learning. Based on differentiable programming, mechanical and neural network models are fused and solved in a unified framework. Simultaneous 1-3 dimensional numerical simulations can be performed on CPUs and GPUs.