Showing 11 open source projects for "conda"

View related business solutions
  • Our Free Plans just got better! | Auth0 by Okta Icon
    Our Free Plans just got better! | Auth0 by Okta

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your secuirty. Auth0 now, thank yourself later.
    Try free now
  • Red Hat Enterprise Linux on Microsoft Azure Icon
    Red Hat Enterprise Linux on Microsoft Azure

    Deploy Red Hat Enterprise Linux on Microsoft Azure for a secure, reliable, and scalable cloud environment, fully integrated with Microsoft services.

    Red Hat Enterprise Linux (RHEL) on Microsoft Azure provides a secure, reliable, and flexible foundation for your cloud infrastructure. Red Hat Enterprise Linux on Microsoft Azure is ideal for enterprises seeking to enhance their cloud environment with seamless integration, consistent performance, and comprehensive support.
    Learn More
  • 1
    Conda.jl

    Conda.jl

    https://github.com/JuliaPy/Conda.jl

    This package allows one to use conda as a cross-platform binary provider for Julia for other Julia packages, especially to install binaries that have complicated dependencies like Python. conda is a package manager that started as the binary package manager for the Anaconda Python distribution, but it also provides arbitrary packages. Instead of the full Anaconda distribution, Conda.jl uses the miniconda Python environment, which only includes conda and its dependencies.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CondaPkg.jl

    CondaPkg.jl

    Add Conda dependencies to your Julia project

    Add Conda dependencies to your Julia project. This package is a lot like Pkg from the Julia standard library, except that it is for managing Conda packages. Conda dependencies are defined in CondaPkg.toml, which is analogous to Project.toml. CondaPkg will install these dependencies into a Conda environment specific to the current Julia project. Hence dependencies are isolated from other projects or environments. Functions like add, rm, status exist to edit the dependencies programmatically...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    ... the SDV project, or input your own data. Choose from any of the SDV synthesizers and baselines. Or write your own custom machine learning model. In addition to performance and memory usage, you can also measure synthetic data quality and privacy through a variety of metrics. Install SDGym using pip or conda. We recommend using a virtual environment to avoid conflicts with other software on your device.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    PySR

    PySR

    High-Performance Symbolic Regression in Python and Julia

    PySR is an open-source tool for Symbolic Regression: a machine learning task where the goal is to find an interpretable symbolic expression that optimizes some objective. Over a period of several years, PySR has been engineered from the ground up to be (1) as high-performance as possible, (2) as configurable as possible, and (3) easy to use. PySR is developed alongside the Julia library SymbolicRegression.jl, which forms the powerful search engine of PySR. The details of these algorithms are...
    Downloads: 1 This Week
    Last Update:
    See Project
  • The #1 Embedded Analytics Solution for SaaS Teams. Icon
    The #1 Embedded Analytics Solution for SaaS Teams.

    Qrvey saves engineering teams time and money with a turnkey multi-tenant solution connecting your data warehouse to your SaaS application.

    Qrvey’s comprehensive embedded analytics software enables you to design more customizable analytics experiences for your end users.
    Try Developer Playground
  • 5
    FEniCS.jl

    FEniCS.jl

    A scientific machine learning (SciML) wrapper for the FEniCS

    FEniCS.jl is a wrapper for the FEniCS library for finite element discretizations of PDEs. This wrapper includes three parts. Installation and direct access to FEniCS via a Conda installation. Alternatively one may use their current FEniCS installation. A low-level development API and provides some functionality to make directly dealing with the library a little bit easier, but still requires knowledge of FEniCS itself. Interfaces have been provided for the main functions and their attributes...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    ipychart

    ipychart

    The power of Chart.js with Python

    Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive, and modular and are displayed directly in the output of the cells of your jupyter notebook environment. Charts are fully interactive, you can hover it to display tooltips and select the information you want to see directly from the output cell of your notebook. All the types of charts present in Chart.js are exposed in ipychart. Even complex features such...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Stan.jl

    Stan.jl

    Stan.jl illustrates the usage of the 'single method' packages

    A collection of example Stan Language programs demonstrating all methods available in Stan's cmdstan executable (as an external program) from Julia. For most applications one of the "single method" packages, e.g. StanSample.jl, StanDiagnose.jl, etc., is a better choice for day-to-day use. To execute the most important method in Stan ("sample"), use StanSample.jl. Some Pluto notebook examples can be found in the repository.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    cuDF

    cuDF

    GPU DataFrame Library

    ... with conda (miniconda, or the full Anaconda distribution) from the rapidsai channel. cuDF is supported only on Linux, and with Python versions 3.7 and later. The RAPIDS suite of open-source software libraries aims to enable the execution of end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization but exposing that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TSNE-CUDA

    TSNE-CUDA

    GPU Accelerated t-SNE for CUDA with Python bindings

    This repo is an optimized CUDA version of FIt-SNE algorithm with associated python modules. We find that our implementation of t-SNE can be up to 1200x faster than Sklearn, or up to 50x faster than Multicore-TSNE when used with the right GPU. You can install binaries with anaconda for CUDA version 10.1 and 10.2 using conda install tsnecuda -c conda-forge. Tsnecuda supports CUDA versions 9.0 and later through source installation, check out the wiki for up to date installation instructions. Time...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • 10

    Ubuntu -16.04-DataScience-stack

    To provide a customized environment to practice data science

    Although its a relatively easy task to setup, a customized environment to practice data science with the python tool stack is less common, including this site, Vagrant boxes and osboxes.org. Hence this project is kicked out as of early 2019.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DeepLearningProject

    DeepLearningProject

    An in-depth machine learning tutorial

    This tutorial tries to do what most Most Machine Learning tutorials available online do not. It is not a 30 minute tutorial that teaches you how to "Train your own neural network" or "Learn deep learning in under 30 minutes". It's a full pipeline which you would need to do if you actually work with machine learning - introducing you to all the parts, and all the implementation decisions and details that need to be made. The dataset is not one of the standard sets like MNIST or CIFAR, you...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next