Showing 2 open source projects for "code::block"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    DotVVM

    DotVVM

    Open source MVVM framework for Web Apps

    ...Save your time with GridView, FileUpload and other components shipped with the framework. Don't spend the time building an API. Just load data from the database and use data-binding to display them. DotVVM needs less than 100 kB of JavaScript code. It's smaller than other ASP.NET-based frameworks. DotVVM offers a free Visual Studio extension giving you all the comfort you are used to. DotVVM comes with ready-made components you can use in your HTML files. The state and user interactions are handled in view models - C# classes. The controls render simple HTML which can be styled easily. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next