Showing 2 open source projects for "deep learning with python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Volcano

    Volcano

    A Cloud Native Batch System (Project under CNCF)

    Volcano is a batch system built on Kubernetes. It provides a suite of mechanisms that are commonly required by many classes of batch & elastic workload including machine learning/deep learning, bioinformatics/genomics, and other "big data" applications. These types of applications typically run on generalized domain frameworks like TensorFlow, Spark, Ray, PyTorch, MPI, etc, which Volcano integrates with. Volcano builds upon a decade and a half of experience running a wide variety of high-performance workloads at scale using several systems and platforms, combined with best-of-breed ideas and practices from the open-source community. ...
    Downloads: 31 This Week
    Last Update:
    See Project
  • 2
    KServe

    KServe

    Standardized Serverless ML Inference Platform on Kubernetes

    KServe provides a Kubernetes Custom Resource Definition for serving machine learning (ML) models on arbitrary frameworks. It aims to solve production model serving use cases by providing performant, high abstraction interfaces for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX. It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next