Open Source Python Computer Vision Libraries

Python Computer Vision Libraries

View 186 business solutions

Browse free open source Python Computer Vision Libraries and projects below. Use the toggles on the left to filter open source Python Computer Vision Libraries by OS, license, language, programming language, and project status.

  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    The Open Source Computer Vision Library has >2500 algorithms, extensive documentation and sample code for real-time computer vision. It works on Windows, Linux, Mac OS X, Android, iOS in your browser through JavaScript. Languages: C++, Python, Julia, Javascript Homepage: https://opencv.org Q&A forum: https://forum.opencv.org/ Documentation: https://docs.opencv.org Source code: https://github.com/opencv Please pay special attention to our tutorials! https://docs.opencv.org/master Books about the OpenCV are described here: https://opencv.org/books.html
    Leader badge
    Downloads: 3,293 This Week
    Last Update:
    See Project
  • 2
    MESHROOM

    MESHROOM

    3D reconstruction software

    Photogrammetry is the science of making measurements from photographs. It infers the geometry of a scene from a set of unordered photographies or videos. Photography is the projection of a 3D scene onto a 2D plane, losing depth information. The goal of photogrammetry is to reverse this process. The dense modeling of the scene is the result yielded by chaining two computer vision-based pipelines, “Structure-from-Motion” (SfM) and “Multi View Stereo” (MVS). Fusion of Multi-bracketing LDR images into HDR. Alignment of panorama images. Support for fisheye optics. Automatically estimate fisheye circle or manually edit it. Take advantage of motorized-head file. Easy to integrate in your Renderfarm System. Add specific rules to select the most suitable machines regarding CPU, RAM, GPU requirements of each Node.
    Downloads: 109 This Week
    Last Update:
    See Project
  • 3
    ImageAI

    ImageAI

    A python library built to empower developers

    ImageAI is an easy-to-use Computer Vision Python library that empowers developers to easily integrate state-of-the-art Artificial Intelligence features into their new and existing applications and systems. It is used by thousands of developers, students, researchers, tutors and experts in corporate organizations around the world. You will find features supported, links to official documentation as well as articles on ImageAI. ImageAI is widely used around the world by professionals, students, research groups and businesses. ImageAI provides API to recognize 1000 different objects in a picture using pre-trained models that were trained on the ImageNet-1000 dataset. The model implementations provided are SqueezeNet, ResNet, InceptionV3 and DenseNet. ImageAI provides API to detect, locate and identify 80 most common objects in everyday life in a picture using pre-trained models that were trained on the COCO Dataset.
    Downloads: 22 This Week
    Last Update:
    See Project
  • 4
    PIFuHD

    PIFuHD

    High-Resolution 3D Human Digitization from A Single Image

    PIFuHD (Pixel-Aligned Implicit Function for 3D human reconstruction at high resolution) is a method and codebase to reconstruct high-fidelity 3D human meshes from a single image. It extends prior PIFu work by increasing resolution and detail, enabling fine geometry in cloth folds, hair, and subtle surface features. The method operates by learning an implicit occupancy / surface function conditioned on the image and camera projection; at inference time it queries dense points to reconstruct a mesh via marching cubes. It also uses a two-stage architecture: a coarse global model followed by local refinement patches to capture fine detail, balancing global consistency and local detail. The repo includes training pipelines, dataset loaders (for Multi-POP, etc.), and inference scripts for mesh output including depth maps for postprocessing. To help practical use, there are utilities for normal estimation, texture back-projection, mesh cleanup, and integration with rendering pipelines.
    Downloads: 15 This Week
    Last Update:
    See Project
  • Trumba is an All-in-one Calendar Management and Event Registration platform Icon
    Trumba is an All-in-one Calendar Management and Event Registration platform

    Great for live, virtual and hybrid events

    Publish, promote and track your events more affordably and effectively—all in one place.
    Learn More
  • 5
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images such as edge detection and color clustering have also been added. GIMP-ML relies on standard Python packages such as numpy, scikit-image, pillow, pytorch, open-cv, scipy. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 6
    Vision Transformer Pytorch

    Vision Transformer Pytorch

    Implementation of Vision Transformer, a simple way to achieve SOTA

    This repository provides a from-scratch, minimalist implementation of the Vision Transformer (ViT) in PyTorch, focusing on the core architectural pieces needed for image classification. It breaks down the model into patch embedding, positional encoding, multi-head self-attention, feed-forward blocks, and a classification head so you can understand each component in isolation. The code is intentionally compact and modular, which makes it easy to tinker with hyperparameters, depth, width, and attention dimensions. Because it stays close to vanilla PyTorch, you can integrate custom datasets and training loops without framework lock-in. It’s widely used as an educational reference for people learning transformers in vision and as a lightweight baseline for research prototypes. The project encourages experimentation—swap optimizers, change augmentations, or plug the transformer backbone into downstream tasks.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep integration with the Hugging Face Hub, allowing you to easily load and share a dataset with the wider NLP community. There are currently over 2658 datasets, and more than 34 metrics available. Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow). Smart caching: never wait for your data to process several times.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    DensePose

    DensePose

    A real-time approach for mapping all human pixels of 2D RGB images

    DensePose is a computer vision system that maps all human pixels in an RGB image to the 3D surface of a human body model. It extends human pose estimation from predicting joint keypoints to providing dense correspondences between 2D images and a canonical 3D mesh (such as the SMPL model). This enables detailed understanding of human shape, motion, and surface appearance directly from images or videos. The repository includes the DensePose network architecture, training code, pretrained models, and dataset tools for annotation and visualization. DensePose is widely used in augmented reality, motion capture, virtual try-on, and visual effects applications because it enables real-time 3D human mapping from 2D inputs. The model architecture builds on Mask R-CNN, using additional regression heads to predict UV coordinates that map image pixels to 3D surfaces.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This includes the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 3 This Week
    Last Update:
    See Project
  • DAT Freight and Analytics - DAT Icon
    DAT Freight and Analytics - DAT

    DAT Freight and Analytics operates DAT One truckload freight marketplace

    DAT Freight & Analytics operates DAT One, North America’s largest truckload freight marketplace; DAT iQ, the industry’s leading freight data analytics service; and Trucker Tools, the leader in load visibility. Shippers, transportation brokers, carriers, news organizations, and industry analysts rely on DAT for market trends and data insights, informed by nearly 700,000 daily load posts and a database exceeding $1 trillion in freight market transactions. Founded in 1978, DAT is a business unit of Roper Technologies (Nasdaq: ROP), a constituent of the Nasdaq 100, S&P 500, and Fortune 1000. Headquartered in Beaverton, Ore., DAT continues to set the standard for innovation in the trucking and logistics industry.
    Learn More
  • 10
    MMF

    MMF

    A modular framework for vision & language multimodal research

    MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-the-art vision and language models and has powered multiple research projects at Facebook AI Research. MMF is designed from ground up to let you focus on what matters, your model, by providing boilerplate code for distributed training, common datasets and state-of-the-art pre-trained baselines out-of-the-box. MMF is built on top of PyTorch that brings all of its power in your hands. MMF is not strongly opinionated. So you can use all of your PyTorch knowledge here. MMF is created to be easily extensible and composable. Through our modular design, you can use specific components from MMF that you care about. Our configuration system allows MMF to easily adapt to your needs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    The Transformer architecture has improved the performance of deep learning models in domains such as Computer Vision and Natural Language Processing. Together with better performance come larger model sizes. This imposes challenges to the memory wall of the current accelerator hardware such as GPU. It is never ideal to train large models such as Vision Transformer, BERT, and GPT on a single GPU or a single machine. There is an urgent demand to train models in a distributed environment. However, distributed training, especially model parallelism, often requires domain expertise in computer systems and architecture. It remains a challenge for AI researchers to implement complex distributed training solutions for their models. Colossal-AI provides a collection of parallel components for you. We aim to support you to write your distributed deep learning models just like how you write your model on your laptop.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    LLaVA

    LLaVA

    Visual Instruction Tuning: Large Language-and-Vision Assistant

    Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    qiji-font

    qiji-font

    Typeface from Ming Dynasty woodblock printed books

    Typeface from Ming Dynasty woodblock printed books. A Ming typeface. Extracted from Ming Dynasty woodblock printed books (凌閔刻本). Using semi-automatic computer vision and OCR. Open-source. A work in progress. Named in honor of 閔齊伋, a 16th-century printer. Intended to be used with Kenyan-lang, the Classical Chinese programming language. Download high-resolution PDFs and split pages into images. Manually lay a grid on top of each page to generate bounding boxes for characters (potentially replaceable by an automatic corner-detection algorithm). Generate a low-poly mask for each character on the grid, and save the thumbnails (using OpenCV). First, red channel is subtracted from the grayscale, in order to clean the annotations printed in red ink. Next, the image is thresholded and fed into the contour-tracing algorithm. A metric is then used to discard shapes that are unlikely to be part of the character in interest.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    DETR

    DETR

    End-to-end object detection with transformers

    PyTorch training code and pretrained models for DETR (DEtection TRansformer). We replace the full complex hand-crafted object detection pipeline with a Transformer, and match Faster R-CNN with a ResNet-50, obtaining 42 AP on COCO using half the computation power (FLOPs) and the same number of parameters. Inference in 50 lines of PyTorch. What it is. Unlike traditional computer vision techniques, DETR approaches object detection as a direct set prediction problem. It consists of a set-based global loss, which forces unique predictions via bipartite matching, and a Transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. Due to this parallel nature, DETR is very fast and efficient.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    " Deep Learning " is the only comprehensive book in the field of deep learning. The full name is also called the Deep Learning AI Bible (Deep Learning) . It is edited by three world-renowned experts, Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Includes linear algebra, probability theory, information theory, numerical optimization, and related content in machine learning. At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    SAM 2

    SAM 2

    The repository provides code for running inference with SAM 2

    SAM2 is a next-generation version of the Segment Anything Model (SAM), designed to improve performance, generalization, and efficiency in promptable image segmentation tasks. It retains the core promptable interface—accepting points, boxes, or masks—but incorporates architectural and training enhancements to produce higher-fidelity masks, better boundary adherence, and robustness to complex scenes. The updated model is optimized for faster inference and lower memory use, enabling real-time interactivity even on larger images or constrained hardware. SAM2 comes with pretrained weights and easy-to-use APIs, enabling developers and researchers to integrate promptable segmentation into annotation tools, vision pipelines, or downstream tasks. The project also includes scripts and notebooks to compare SAM2 against SAM on edge cases, benchmarks showing improvements, and evaluation suites to measure mask quality metrics like IoU and boundary error.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    torchvision

    torchvision

    Datasets, transforms and models specific to Computer Vision

    The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. We recommend Anaconda as Python package management system. Torchvision currently supports Pillow (default), Pillow-SIMD, which is a much faster drop-in replacement for Pillow with SIMD, if installed will be used as the default. Also, accimage, if installed can be activated by calling torchvision.set_image_backend('accimage'), libpng, which can be installed via conda conda install libpng or any of the package managers for debian-based and RHEL-based Linux distributions, and libjpeg, which can be installed via conda conda install jpeg or any of the package managers for debian-based and RHEL-based Linux distributions. It supports libjpeg-turbo as well. libpng and libjpeg must be available at compilation time in order to be available. TorchVision also offers a C++ API that contains C++ equivalent of python models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    Pipeless is an open-source computer vision framework to create and deploy applications without the complexity of building and maintaining multimedia pipelines. It ships everything you need to create and deploy efficient computer vision applications that work in real-time in just minutes. Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision. You provide some functions that are executed for new video frames and Pipeless takes care of everything else. You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. You can deploy your Pipeless application with a single command to edge and IoT devices or the cloud.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    PyCV is a Python package of modules useful for computer vision tasks. Its current focus is on boosting techniques, Haar-like features, and face detection. PyCV provides the world's fastest method for training a face detector, in a few hours.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    OpenFieldAI - AI Open Field Test Tracker

    OpenFieldAI - AI Open Field Test Tracker

    OpenFieldAI is an AI based Open Field Test Rodent Tracker

    OpenFieldAI use AI-CNN to track rodents movement with pretrained OFAI models , or user could create their own model with YOLOv8 for inferencing. The software generates Centroid graph, Heat map and Line path and a spreadsheet containing all calculated parameters like - Speed - Time in and out of ROI - Distance - Entries/Exits for single/multiple pre-recorded videos or live webcam video. The ROI is assigned automatically in multiple video input , and can be manually given in single input. - For Queries/ Reporting Bugs, contact: kabeermuzammil614@gmail.com - Available on WIndows OS
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21

    PyVision Computer Vision Toolkit

    A Python computer vision library

    PyVision is a object-oriented Computer Vision Toolkit for researchers that contains vision and machine learning algorithms and algorithm analysis and easily interfaces with scipy/numpy, PIL, opencv and other computer and machine learning libraries.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    PyArmadillo

    PyArmadillo

    linear algebra library for Python

    PyArmadillo - streamlined linear algebra library for Python, with emphasis on ease of use. Alternative to NumPy / SciPy. * Main page: https://pyarma.sourceforge.io * Documentation: https://pyarma.sourceforge.io/docs.html * Bug reports: https://pyarma.sourceforge.io/faq.html * Git repo: https://gitlab.com/jason-rumengan/pyarma
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    ChainerCV

    ChainerCV

    ChainerCV: a Library for Deep Learning in Computer Vision

    ChainerCV is a collection of tools to train and run neural networks for computer vision tasks using Chainer. In ChainerCV, we define the object detection task as a problem of, given an image, bounding box-based localization and categorization of objects. Bounding boxes in an image are represented as a two-dimensional array of shape (R,4), where R is the number of bounding boxes and the second axis corresponds to the coordinates of bounding boxes. ChainerCV supports dataset loaders, which can be used to easily index examples with list-like interfaces. Dataset classes whose names end with BboxDataset contain annotations of where objects locate in an image and which categories they are assigned to. These datasets can be indexed to return a tuple of an image, bounding boxes and labels. ChainerCV provides several network implementations that carry out object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    CoTracker

    CoTracker

    CoTracker is a model for tracking any point (pixel) on a video

    CoTracker is a learning-based point tracking system that jointly follows many user-specified points across a video, rather than tracking each point independently. By reasoning about all tracks together, it can maintain temporal consistency, handle mutual occlusions, and reduce identity swaps when trajectories cross. The model takes sparse point queries on one frame and predicts their sub-pixel locations and a visibility score for every subsequent frame, producing long, coherent trajectories. Its transformer-style architecture aggregates information both along time and across points, allowing it to recover tracks even after brief disappearances. The repository ships with inference scripts, pretrained weights, and simple interfaces to seed points, run tracking, and export trajectories for downstream tasks. Typical uses include correspondence building, motion analysis, dynamic SLAM priors, video editing masks, and evaluation of geometric consistency in real scenes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next