Showing 4 open source projects for "ofn-layer-aligner"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    ConvNeXt

    ConvNeXt

    Code release for ConvNeXt model

    ConvNeXt is a modernized convolutional neural network (CNN) architecture designed to rival Vision Transformers (ViTs) in accuracy and scalability while retaining the simplicity and efficiency of CNNs. It revisits classic ResNet-style backbones through the lens of transformer design trends—large kernel sizes, inverted bottlenecks, layer normalization, and GELU activations—to bridge the performance gap between convolutions and attention-based models. ConvNeXt’s clean, hierarchical structure makes it efficient for both pretraining and fine-tuning across a wide range of visual recognition tasks. It achieves competitive or superior results on ImageNet and downstream datasets while being easier to deploy and train than transformers. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CAM

    CAM

    Class Activation Mapping

    This repository implements Class Activation Mapping (CAM), a technique to expose the implicit attention of convolutional neural networks by generating heatmaps that highlight the most discriminative image regions influencing a network’s class prediction. The method involves modifying a CNN model slightly (e.g., using global average pooling before the final layer) to produce a weighted combination of feature maps as the class activation map. Integration with existing CNNs (with light modifications). Sample scripts/examples using standard architectures. The repo provides example code and instructions for applying CAM to existing CNN architectures. Visualization of discriminative regions per class.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PyTorch SimCLR

    PyTorch SimCLR

    PyTorch implementation of SimCLR: A Simple Framework

    ...And most important, their features are known to adapt well to new problems. This is particularly interesting when annotated training data is scarce. In situations like this, we take the models’ pre-trained weights, append a new classifier layer on top of it, and retrain the network. This is called transfer learning, and is one of the most used techniques in CV. Aside from a few tricks when performing fine-tuning (if the case), it has been shown (many times) that if training for a new task, models initialized with pre-trained weights tend to learn faster and be more accurate then training from scratch using random initialization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Netvlad

    Netvlad

    NetVLAD: CNN architecture for weakly supervised place recognition

    NetVLAD is a deep learning-based image descriptor framework developed by Relja Arandjelović for place recognition and image retrieval. It extends standard CNNs with a trainable VLAD (Vector of Locally Aggregated Descriptors) layer to create compact, robust global descriptors from image features. This implementation includes training code and pretrained models using the Pittsburgh and Tokyo datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Previous
  • You're on page 1
  • Next