Open Source JavaScript Computer Vision Libraries

JavaScript Computer Vision Libraries

View 187 business solutions

Browse free open source JavaScript Computer Vision Libraries and projects below. Use the toggles on the left to filter open source JavaScript Computer Vision Libraries by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 1
    Monk Computer Vision

    Monk Computer Vision

    A low code unified framework for computer vision and deep learning

    Monk is an open source low code programming environment to reduce the cognitive load faced by entry level programmers while catering to the needs of Expert Deep Learning engineers. There are three libraries in this opensource set. - Monk Classiciation- https://monkai.org. A Unified wrapper over major deep learning frameworks. Our core focus area is at the intersection of Computer Vision and Deep Learning algorithms. - Monk Object Detection - https://github.com/Tessellate-Imaging/Monk_Object_Detection. Monk object detection is our take on assembling state of the art object detection, image segmentation, pose estimation algorithms at one place, making them low code and easily configurable on any machine. - Monk GUI - https://github.com/Tessellate-Imaging/Monk_Gui. An interface over these low code tools for non coders.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Proposed is an algorithm that uses computer vision, combined with a modified Rubine classifier, to allow arbitrary N-sided polygons as accepted sketches in real-time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Show Facebook Computer Vision Tags

    Show Facebook Computer Vision Tags

    Chrome Extension that displays automated image tags from Facebook

    Show Facebook Computer Vision Tags is a Chrome (and Firefox) browser extension created to expose and overlay the automatically generated image tags that Facebook applies to photos in users’ feeds. Since Facebook uses a computer-vision model to analyse user-uploaded images and generate alt-text tags for accessibility (e.g., “Image may contain: golf, grass, outdoor and nature”), this extension surfaces those hidden tags directly in the UI—revealing what kind of information Facebook infers about images (objects present, activities being done, environment). The purpose is educational and somewhat cautionary: to help users understand the scope of visual inference and privacy issues. Once installed, the extension overlays those tags on images in the timeline, making visible what is typically hidden metadata. The project is relatively lightweight but has garnered attention due to its privacy transparency angle.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    Pipeless is an open-source computer vision framework to create and deploy applications without the complexity of building and maintaining multimedia pipelines. It ships everything you need to create and deploy efficient computer vision applications that work in real-time in just minutes. Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision. You provide some functions that are executed for new video frames and Pipeless takes care of everything else. You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. You can deploy your Pipeless application with a single command to edge and IoT devices or the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-First Supply Chain Management Icon
    AI-First Supply Chain Management

    Supply chain managers, executives, and businesses seeking AI-powered solutions to optimize planning, operations, and decision-making across the supply

    Logility is a market-leading provider of AI-first supply chain management solutions engineered to help organizations build sustainable digital supply chains that improve people’s lives and the world we live in. The company’s approach is designed to reimagine supply chain planning by shifting away from traditional “what happened” processes to an AI-driven strategy that combines the power of humans and machines to predict and be ready for what’s coming. Logility’s fully integrated, end-to-end platform helps clients know faster, turn uncertainty into opportunity, and transform the supply chain from a cost center to an engine for growth.
    Learn More
  • 5
    tracking.js

    tracking.js

    A modern approach for Computer Vision on the web

    The tracking.js library brings different computer vision algorithms and techniques into the browser environment. By using modern HTML5 specifications, we enable you to do real-time color tracking, face detection and much more, all that with a lightweight core (~7 KB) and intuitive interface. To get started, download the project. This project includes all of the tracking.js examples, source code dependencies you'll need to get started. Unzip the project somewhere on your local drive. The package includes an initial version of the project you'll be working with. While you're working, you'll need a basic HTTP server to serve your pages. Test out the web server by loading the finished version of the project. The main goal of tracking.js is to provide those complex techniques in a simple and intuitive way on the web. We believe computer vision is important to improve people's life, bringing it to the web will make this future a reality a lot faster.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next