3 projects for "fast performance" with 2 filters applied:

  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    Blazeface

    Blazeface

    Blazeface is a lightweight model that detects faces in images

    Blazeface is a lightweight, high-performance face detection model designed for mobile and embedded devices, developed by TensorFlow. It is optimized for real-time face detection tasks and runs efficiently on mobile CPUs, ensuring minimal latency and power consumption. Blazeface is based on a fast architecture and uses deep learning techniques to detect faces with high accuracy, even in challenging conditions.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    maskrcnn-benchmark

    maskrcnn-benchmark

    Fast, modular reference implementation of Instance Segmentation

    Mask R-CNN Benchmark is a PyTorch-based framework that provides high-performance implementations of object detection, instance segmentation, and keypoint detection models. Originally built to benchmark Mask R-CNN and related models, it offers a clean, modular design to train and evaluate detection systems efficiently on standard datasets like COCO. The framework integrates critical components—region proposal networks (RPNs), RoIAlign layers, mask heads, and backbone architectures such as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    R-FCN

    R-FCN

    R-FCN: Object Detection via Region-based Fully Convolutional Networks

    R-FCN (“Region-based Fully Convolutional Networks”) is an object detection framework that makes almost all computation fully convolutional and shared across the image, unlike prior region-based approaches (e.g. Faster R-CNN) which run per-region sub-networks. The repository provides an implementation (in Python) supporting end-to-end training and inference of R-FCN models on standard datasets. The authors propose position-sensitive score maps to reconcile the need for translation variance...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next