Showing 2 open source projects for "numpy-mkl"

View related business solutions
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 1
    Numba

    Numba

    NumPy aware dynamic Python compiler using LLVM

    ...Just apply one of the Numba decorators to your Python function, and Numba does the rest. Numba is designed to be used with NumPy arrays and functions. Numba generates specialized code for different array data types and layouts to optimize performance. Special decorators can create universal functions that broadcast over NumPy arrays just like NumPy functions do. Numba also works great with Jupyter notebooks for interactive computing, and with distributed execution frameworks, like Dask and Spark.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Cython

    Cython

    The most widely used Python to C compiler

    ...Easily tune readable Python code into plain C performance by adding static type declarations, also in Python syntax. Use combined source code level debugging to find bugs in your Python, Cython, and C code. Interact efficiently with large data sets, e.g. using multi-dimensional NumPy arrays. Quickly build your applications within the large, mature, and widely used CPython ecosystem. Integrate natively with existing code and data from legacy, low-level or high-performance libraries and applications. The Cython language is a superset of the Python language that additionally supports calling C functions and declaring C types on variables and class attributes.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB