Search Results for "machine learning python" - Page 11

544 projects for "machine learning python" with 1 filter applied:

  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    cintruder

    cintruder

    CIntruder - OCR Bruteforcing Toolkit

    Captcha Intruder is an automatic pentesting tool to bypass captchas. -> CIntruder-v0.4 (.zip) -> md5 = 6326ab514e329e4ccd5e1533d5d53967 -> CIntruder-v0.4 (.tar.gz) ->md5 = 2256fccac505064f3b84ee2c43921a68 --------------------------------------------
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Think Bayes

    Think Bayes

    Code repository for Think Bayes

    ThinkBayes is the code repository accompanying Think Bayes: a book on Bayesian statistics written in a computational style. Instead of heavy focus on continuous mathematics or calculus, the book emphasizes learning Bayesian inference by writing Python programs. The project includes code examples, scripts, and environments that correspond to the chapters of the book. Learners can run the code, experiment with probability distributions, compute posterior probabilities, and understand Bayesian updating via simulation and algorithmic methods. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Albedo

    Albedo

    A recommender system for discovering GitHub repos

    Albedo is an open-source recommender system aimed at helping developers discover GitHub repositories by learning from activity signals. It treats repositories and developers as a graph of interactions and applies large-scale matrix factorization to model affinities, with Apache Spark providing the distributed data processing. The project focuses on implicit feedback—stars, watches, and other engagement metrics—so it can build useful recommendations without explicit ratings. A reproducible...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 30 This Week
    Last Update:
    See Project
  • AestheticsPro Medical Spa Software Icon
    AestheticsPro Medical Spa Software

    Our new software release will dramatically improve your medspa business performance while enhancing the customer experience

    AestheticsPro is the most complete Aesthetics Software on the market today. HIPAA Cloud Compliant with electronic charting, integrated POS, targeted marketing and results driven reporting; AestheticsPro delivers the tools you need to manage your medical spa business. It is our mission To Provide an All-in-One Cutting Edge Software to the Aesthetics Industry.
    Learn More
  • 5
    The Neural Process Family

    The Neural Process Family

    This repository contains notebook implementations

    Neural Processes (NPs) is a collection of interactive Jupyter/Colab notebook implementations developed by Google DeepMind, showcasing three foundational probabilistic machine learning models: Conditional Neural Processes (CNPs), Neural Processes (NPs), and Attentive Neural Processes (ANPs). These models combine the strengths of neural networks and stochastic processes, allowing for flexible function approximation with uncertainty estimation. They can learn distributions over functions from data and efficiently make predictions at new inputs with calibrated uncertainty — making them useful for few-shot learning, Bayesian regression, and meta-learning. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    deep-q-learning

    deep-q-learning

    Minimal Deep Q Learning (DQN & DDQN) implementations in Keras

    The deep-q-learning repository authored by keon provides a Python-based implementation of the Deep Q-Learning algorithm — a cornerstone method in reinforcement learning. It implements the core logic needed to train an agent using Q-learning with neural networks (i.e. approximating Q-values via deep nets), setting up environment interaction loops, experience replay, network updates, and policy behavior.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    RecNN

    RecNN

    Reinforced Recommendation toolkit built around pytorch 1.7

    This is my school project. It focuses on Reinforcement Learning for personalized news recommendation. The main distinction is that it tries to solve online off-policy learning with dynamically generated item embeddings. I want to create a library with SOTA algorithms for reinforcement learning recommendation, providing the level of abstraction you like.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    cocoNLP

    cocoNLP

    A Chinese information extraction tool

    cocoNLP is a lightweight natural-language processing toolkit geared toward practical information extraction from raw text, especially for Chinese and mixed Chinese–English content. Instead of requiring a heavy pipeline, it focuses on quick wins such as extracting names, places, organizations, emails, phone numbers, and dates directly from unstructured sentences. The project blends pattern-based methods with NLP heuristics, giving developers dependable results for real-world texts like chats,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Scikit-learn Tutorial

    Scikit-learn Tutorial

    An introductory tutorial for scikit-learn

    ...The repository specifies a clear list of dependencies so that participants can reproduce the environment used in the tutorial, and many downstream forks keep the content updated for newer versions of scikit-learn. Although the GitHub repository has been archived and is read-only, it is still a valuable snapshot of early, hands-on teaching material for scikit-learn and machine learning in Python.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 10
    SMAC

    SMAC

    SMAC: The StarCraft Multi-Agent Challenge

    SMAC (StarCraft II Multi-Agent Challenge) is a benchmark environment for cooperative multi-agent reinforcement learning (MARL), based on real-time strategy (RTS) game scenarios in StarCraft II. It allows researchers to test algorithms where multiple units (agents) must collaborate to win battles against built-in game AI opponents. SMAC provides a controlled testbed for studying decentralized execution and centralized training paradigms in MARL.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TensorFlow Course

    TensorFlow Course

    Simple and ready-to-use tutorials for TensorFlow

    This repository houses a highly popular (~16k stars) set of TensorFlow tutorials and example code aimed at beginners and intermediate users. It includes Jupyter notebooks and scripts that cover neural network fundamentals, model training, deployment, and more, with support for Google Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Activity Recognition

    Activity Recognition

    Resources about activity recognition

    This repository is a curated collection of resources, papers, code, and summaries relating to human activity recognition/behavior recognition. It is not a single integrated software package but rather a knowledge base organizing feature extraction methods, deep learning approaches, transfer learning strategies, datasets, and representative research in behavior recognition. The repository includes links to code in MATLAB, Python, summaries of algorithms, datasets, and relevant research papers. Feature extraction method summaries (e.g. motion, sensor, vision). Deep learning for activity recognition references.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    PyTorch-BigGraph

    PyTorch-BigGraph

    Generate embeddings from large-scale graph-structured data

    PyTorch-BigGraph (PBG) is a system for learning embeddings on massive graphs—think billions of nodes and edges—using partitioning and distributed training to keep memory and compute tractable. It shards entities into partitions and buckets edges so that each training pass only touches a small slice of parameters, which drastically reduces peak RAM and enables horizontal scaling across machines. PBG supports multi-relation graphs (knowledge graphs) with relation-specific scoring functions,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    TF Quant Finance

    TF Quant Finance

    High-performance TensorFlow library for quantitative finance

    TF Quant Finance is a high-performance library of quantitative finance components built on TensorFlow, aimed at research and production workloads. It implements pricing engines, risk measures, stochastic models, optimizers, and random number generators that are differentiable and vectorized for accelerators. Users can value options and fixed-income instruments, simulate paths, fit curves, and calibrate models while leveraging TensorFlow’s jit compilation and automatic differentiation. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    CCZero (中国象棋Zero)

    CCZero (中国象棋Zero)

    Implement AlphaZero/AlphaGo Zero methods on Chinese chess

    ChineseChess-AlphaZero is a project that implements the AlphaZero algorithm for the game of Chinese Chess (Xiangqi). It adapts DeepMind’s AlphaZero method—combining neural networks and Monte Carlo Tree Search (MCTS)—to learn and play Chinese Chess without prior human data. The system includes self-play, training, and evaluation pipelines tailored to Xiangqi's unique game mechanics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    benchm-ml

    benchm-ml

    A benchmark of commonly used open source implementations

    This repository is designed to provide a minimal benchmark framework comparing commonly used machine learning libraries in terms of scalability, speed, and classification accuracy. The focus is on binary classification tasks without missing data, where inputs can be numeric or categorical (after one-hot encoding). It targets large scale settings by varying the number of observations (n) up to millions and the number of features (after expansion) to about a thousand, to stress test different implementations. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    UnsupervisedMT

    UnsupervisedMT

    Phrase-Based & Neural Unsupervised Machine Translation

    Unsupervised Machine Translation is a research repository that implements both phrase-based SMT and neural MT approaches for translation without parallel corpora. The neural component supports multiple architectures—seq2seq, biLSTM with attention, and Transformer—and allows extensive parameter sharing across languages to improve data efficiency. Training relies on denoising auto-encoding and back-translation, with on-the-fly, multithreaded generation of synthetic parallel data to continually...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    PivotSuite

    PivotSuite

    Network Pivoting Toolkit

    PivotSuite is a portable, platform-independent and powerful network pivoting toolkit, Which helps Red Teamers / Penetration Testers to use a compromised system to move around inside a network. It is a Standalone Utility, Which can use as a Server or as a Client. If the compromised host is directly accessible (Forward Connection) from Our pentest machine, Then we can run pivotsuite as a server on the compromised machine and access the different subnet hosts from our pentest machine, Which was...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    ...The training and evaluation pipeline is lightweight and fast, so experimenting with different languages or initialization strategies is easy. Beyond dictionary induction, the learned embeddings are often used as building blocks for downstream tasks like classification, retrieval, or machine translation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    data-science-ipython-notebooks

    data-science-ipython-notebooks

    Data science Python notebooks: Deep learning

    Data Science IPython Notebooks is a broad, curated set of Jupyter notebooks covering Python, data wrangling, visualization, machine learning, deep learning, and big data tools. It aims to be a practical map of the ecosystem, showing hands-on examples with libraries such as NumPy, pandas, matplotlib, scikit-learn, and others. Many notebooks introduce concepts step by step, then apply them to real datasets so readers can see techniques in action.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ELF (Extensive Lightweight Framework)

    ELF (Extensive Lightweight Framework)

    An End-To-End, Lightweight and Flexible Platform for Game Research

    ELF (Extensive, Lightweight, and Flexible) is a high-performance platform for reinforcement learning research that unifies simulation, data collection, and distributed training. A C++ core provides fast environments and concurrent actors, while Python bindings expose simple APIs for agents, replay, and optimization loops. It supports both single-agent and multi-agent settings, with batched stepping and shared-memory queues that keep GPUs saturated during training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MITIE

    MITIE

    MITIE: library and tools for information extraction

    ...The current release includes tools for performing named entity extraction and binary relation detection as well as tools for training custom extractors and relation detectors. MITIE is built on top of dlib, a high-performance machine-learning library[1], MITIE makes use of several state-of-the-art techniques including the use of distributional word embeddings[2] and Structural Support Vector Machines[3]. MITIE offers several pre-trained models providing varying levels of support for both English, Spanish, and German trained using a variety of linguistic resources (e.g., CoNLL 2003, ACE, Wikipedia, Freebase, and Gigaword). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    CFD Python

    CFD Python

    Sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

    CFD Python, a.k.a. the 12 steps to Navier-Stokes, is a practical module for learning the foundations of Computational Fluid Dynamics (CFD) by coding solutions to the basic partial differential equations that describe the physics of fluid flow. The module was part of a course taught by Prof. Lorena Barba between 2009 and 2013 in the Mechanical Engineering department at Boston University (Prof.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Learn_Data_Science_in_3_Months

    Learn_Data_Science_in_3_Months

    This is the Curriculum for "Learn Data Science in 3 Months"

    This project lays out a 12-week plan to go from basics to a portfolio-ready understanding of data science. It breaks the journey into clear stages: Python fundamentals, data wrangling, visualization, statistics, machine learning, and end-to-end projects. The schedule mixes learning and doing, encouraging you to build small deliverables each week—like notebooks, dashboards, and model demos—to reinforce skills. It also includes suggestions for datasets and problem domains so you aren’t stuck wondering what to analyze next. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Functional, Data Science Intro To Python

    Functional, Data Science Intro To Python

    [tutorial]A functional, Data Science focused introduction to Python

    The first section is an intentionally brief, functional, data science-centric introduction to Python. The assumption is a someone with zero experience in programming can follow this tutorial and learn Python with the smallest amount of information possible. The sections after that, involve varying levels of difficulty and cover topics as diverse as Machine Learning, Linear Optimization, build systems, command line tools, recommendation engines, Sentiment Analysis and Cloud Computing.
    Downloads: 0 This Week
    Last Update:
    See Project