Showing 30 open source projects for "spectra deep learning"

View related business solutions
  • Top-Rated Free CRM Software Icon
    Top-Rated Free CRM Software

    216,000+ customers in over 135 countries grow their businesses with HubSpot

    HubSpot is an AI-powered customer platform with all the software, integrations, and resources you need to connect your marketing, sales, and customer service. HubSpot's connected platform enables you to grow your business faster by focusing on what matters most: your customers.
    Get started free
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 1
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Deep Learning course

    Deep Learning course

    Slides and Jupyter notebooks for the Deep Learning lectures

    Slides and Jupyter notebooks for the Deep Learning lectures at Master Year 2 Data Science from Institut Polytechnique de Paris. This course is being taught at as part of Master Year 2 Data Science IP-Paris. Note: press "P" to display the presenter's notes that include some comments and additional references. This lecture is built and maintained by Olivier Grisel and Charles Ollion.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is about...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Save hundreds of developer hours with components built for SaaS applications. Icon
    Save hundreds of developer hours with components built for SaaS applications.

    The #1 Embedded Analytics Solution for SaaS Teams.

    Whether you want full self-service analytics or simpler multi-tenant security, Qrvey’s embeddable components and scalable data management remove the guess work.
    Try Developer Playground
  • 5
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    TorchIO

    TorchIO

    Medical imaging toolkit for deep learning

    TorchIO is an open-source Python library for efficient loading, preprocessing, augmentation and patch-based sampling of 3D medical images in deep learning, following the design of PyTorch. It includes multiple intensity and spatial transforms for data augmentation and preprocessing. These transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity (bias...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    FinMind

    FinMind

    Open Data, more than 50 financial data

    In the era of big data, data is the foundation of everything. We collect more than 50 kinds of Taiwan stock related information and provide download, online analysis, and backtesting. Regardless of the program, you can download data through the api provided by FinMind, or you can download data directly from the website. After data is available, statistical analysis, regression analysis, time series analysis, machine learning, and deep learning can be performed. For individual stocks, provide...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    FastAI.jl

    FastAI.jl

    Repository of best practices for deep learning in Julia

    FastAI.jl is a Julia library for training state-of-the-art deep learning models. From loading datasets and creating data preprocessing pipelines to training, FastAI.jl takes the boilerplate out of deep learning projects. It equips you with reusable components for every part of your project while remaining customizable at every layer. FastAI.jl comes with support for common computer vision and tabular data learning tasks, with more to come.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Bright Data - All in One Platform for Proxies and Web Scraping Icon
    Bright Data - All in One Platform for Proxies and Web Scraping

    Say goodbye to blocks, restrictions, and CAPTCHAs

    Bright Data offers the highest quality proxies with automated session management, IP rotation, and advanced web unlocking technology. Enjoy reliable, fast performance with easy integration, a user-friendly dashboard, and enterprise-grade scaling. Powered by ethically-sourced residential IPs for seamless web scraping.
    Get Started
  • 10
    JUDI.jl

    JUDI.jl

    Julia Devito inversion

    ... operators can also be used as layers in (convolutional) neural networks to implement physics-augmented deep learning algorithms thanks to its implementation of ChainRules's rrule for the linear operators representing the discre wave equation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning, model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Recommenders

    Recommenders

    Best practices on recommendation systems

    The Recommenders repository provides examples and best practices for building recommendation systems, provided as Jupyter notebooks. The module reco_utils contains functions to simplify common tasks used when developing and evaluating recommender systems. Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ReinforcementLearning.jl

    ReinforcementLearning.jl

    A reinforcement learning package for Julia

    A collection of tools for doing reinforcement learning research in Julia. Provide elaborately designed components and interfaces to help users implement new algorithms. Make it easy for new users to run benchmark experiments, compare different algorithms, and evaluate and diagnose agents. Facilitate reproducibility from traditional tabular methods to modern deep reinforcement learning algorithms. Make it easy for new users to run benchmark experiments, compare different algorithms, and evaluate...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DeepH-pack

    DeepH-pack

    Deep neural networks for density functional theory Hamiltonian

    DeepH-pack is the official implementation of the DeepH (Deep Hamiltonian) method described in the paper Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation and in the Research Briefing. DeepH-pack supports DFT results made by ABACUS, OpenMX, FHI-aims or SIESTA and will support HONPAS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    ... on the NVIDIA developer website. Transform data (ETL) for preprocessing and engineering features. Accelerate your existing training pipelines in TensorFlow, PyTorch, or FastAI by leveraging optimized, custom-built data loaders. Scale large deep learning recommender models by distributing large embedding tables that exceed available GPU and CPU memory. Deploy data transformations and trained models to production with only a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    GraphNeuralNetworks.jl

    GraphNeuralNetworks.jl

    Graph Neural Networks in Julia

    GraphNeuralNetworks.jl is a graph neural network library written in Julia and based on the deep learning framework Flux.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Phoenix

    Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    NeuralOperators.jl

    NeuralOperators.jl

    DeepONets, Neural Operators, Physics-Informed Neural Ops in Julia

    Neural operator is a novel deep learning architecture. It learns an operator, which is a mapping between infinite-dimensional function spaces. It can be used to resolve partial differential equations (PDE). Instead of solving by finite element method, a PDE problem can be resolved by training a neural network to learn an operator mapping from infinite-dimensional space (u, t) to infinite-dimensional space f(u, t). Neural operator learns a continuous function between two continuous function...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PySR

    PySR

    High-Performance Symbolic Regression in Python and Julia

    PySR is an open-source tool for Symbolic Regression: a machine learning task where the goal is to find an interpretable symbolic expression that optimizes some objective. Over a period of several years, PySR has been engineered from the ground up to be (1) as high-performance as possible, (2) as configurable as possible, and (3) easy to use. PySR is developed alongside the Julia library SymbolicRegression.jl, which forms the powerful search engine of PySR. The details of these algorithms...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    OmicSelector

    OmicSelector

    Feature selection and deep learning modeling for omic biomarker study

    OmicSelector is an environment, Docker-based web application, and R package for biomarker signature selection (feature selection) from high-throughput experiments and others. It was initially developed for miRNA-seq (small RNA, smRNA-seq; hence the name was miRNAselector), RNA-seq and qPCR, but can be applied for every problem where numeric features should be selected to counteract overfitting of the models. Using our tool, you can choose features, like miRNAs, with the most significant...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Face Mask Detection

    Face Mask Detection

    Face Mask Detection system based on computer vision and deep learning

    Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras. Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect face masks in static images as well as in real-time video streams. Amid the ongoing COVID-19 pandemic, there are no efficient face mask detection applications which are now in high demand for transportation means, densely populated areas, residential districts...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    ReinforcementLearningAnIntroduction.jl

    ReinforcementLearningAnIntroduction.jl

    Julia code for the book Reinforcement Learning An Introduction

    This project provides the Julia code to generate figures in the book Reinforcement Learning: An Introduction(2nd). One of our main goals is to help users understand the basic concepts of reinforcement learning from an engineer's perspective. Once you have grasped how different components are organized, you're ready to explore a wide variety of modern deep reinforcement learning algorithms in ReinforcementLearningZoo.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Amazon SageMaker Examples

    Amazon SageMaker Examples

    Jupyter notebooks that demonstrate how to build models using SageMaker

    Welcome to Amazon SageMaker. This projects highlights example Jupyter notebooks for a variety of machine learning use cases that you can run in SageMaker. If you’re new to SageMaker we recommend starting with more feature-rich SageMaker Studio. It uses the familiar JupyterLab interface and has seamless integration with a variety of deep learning and data science environments and scalable compute resources for training, inference, and other ML operations. Studio offers teams and companies easy...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next