Showing 30 open source projects for "python2-pandas"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    pandas

    pandas

    Fast, flexible and powerful Python data analysis toolkit

    pandas is a Python data analysis library that provides high-performance, user friendly data structures and data analysis tools for the Python programming language. It enables you to carry out entire data analysis workflows in Python without having to switch to a more domain specific language. With pandas, performance, productivity and collaboration in doing data analysis in Python can significantly increase.
    Downloads: 135 This Week
    Last Update:
    See Project
  • 2
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    AWS SDK for pandas

    AWS SDK for pandas

    Easy integration with Athena, Glue, Redshift, Timestream, Neptune

    aws-sdk-pandas (formerly AWS Data Wrangler) bridges pandas with the AWS analytics stack so DataFrames flow seamlessly to and from cloud services. With a few lines of code, you can read from and write to Amazon S3 in Parquet/CSV/JSON/ORC, register tables in the AWS Glue Data Catalog, and query with Amazon Athena directly into pandas. The library abstracts efficient patterns like partitioning, compression, and vectorized I/O so you get performant data lake operations without hand-rolling boilerplate. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Modin

    Modin

    Scale your Pandas workflows by changing a single line of code

    Scale your pandas workflow by changing a single line of code. Modin uses Ray, Dask or Unidist to provide an effortless way to speed up your pandas notebooks, scripts, and libraries. Unlike other distributed DataFrame libraries, Modin provides seamless integration and compatibility with existing pandas code. Even using the DataFrame constructor is identical.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    AWS Data Wrangler

    AWS Data Wrangler

    Pandas on AWS, easy integration with Athena, Glue, Redshift, etc.

    An AWS Professional Service open-source python initiative that extends the power of Pandas library to AWS connecting DataFrames and AWS data-related services. Easy integration with Athena, Glue, Redshift, Timestream, OpenSearch, Neptune, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON, and EXCEL). Built on top of other open-source projects like Pandas, Apache Arrow and Boto3, it offers abstracted functions to execute usual ETL tasks like load/unload data from Data Lakes, Data Warehouses, and Databases. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    Dask

    Dask

    Parallel computing with task scheduling

    Dask is a Python library for parallel and distributed computing, designed to scale analytics workloads from single machines to large clusters. It integrates with familiar tools like NumPy, Pandas, and scikit-learn while enabling execution across cores or nodes with minimal code changes. Dask excels at handling large datasets that don’t fit into memory and is widely used in data science, machine learning, and big data pipelines.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    alpha_vantage

    alpha_vantage

    A python wrapper for Alpha Vantage API for financial data.

    ...Next, get ready for some awesome, free, realtime finance data. Your API key may also be stored in the environment variable ALPHAVANTAGE_API_KEY. The library supports giving its results as json dictionaries (default), pandas dataframe (if installed) or csv, simply pass the parameter output_format='pandas' to change the format of the output for all the API calls in the given class.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Panda-Helper

    Panda-Helper

    Panda-Helper: Data profiling utility for Pandas DataFrames and Series

    Panda-Helper is a simple data-profiling utility for Pandas DataFrames and Series. Assess data quality and usefulness with minimal effort. Quickly perform initial data exploration, so you can move on to more in-depth analysis.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    ydata-profiling

    ydata-profiling

    Create HTML profiling reports from pandas DataFrame objects

    ydata-profiling primary goal is to provide a one-line Exploratory Data Analysis (EDA) experience in a consistent and fast solution. Like pandas df.describe() function, that is so handy, ydata-profiling delivers an extended analysis of a DataFrame while allowing the data analysis to be exported in different formats such as html and json.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Lightspeed golf course management software Icon
    Lightspeed golf course management software

    Lightspeed Golf is all-in-one golf course management software to help courses simplify operations, drive revenue and deliver amazing golf experiences.

    From tee sheet management, point of sale and payment processing to marketing, automation, reporting and more—Lightspeed is built for the pro shop, restaurant, back office, beverage cart and beyond.
    Learn More
  • 10
    Population Shift Monitoring

    Population Shift Monitoring

    Monitor the stability of a Pandas or Spark dataframe

    popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets. popmon creates histograms of features binned in time-slices, and compares the stability of the profiles and distributions of those histograms using statistical tests, both over time and with respect to a reference. It works with numerical, ordinal, categorical features, and the histograms can be higher-dimensional, e.g. it can also track correlations between any two features. popmon can automatically flag and alert on changes observed over time, such as trends, shifts, peaks, outliers, anomalies, changing correlations, etc, using monitoring business rules. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    cuDF

    cuDF

    GPU DataFrame Library

    Built based on the Apache Arrow columnar memory format, cuDF is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data. cuDF provides a pandas-like API that will be familiar to data engineers & data scientists, so they can use it to easily accelerate their workflows without going into the details of CUDA programming. For additional examples, browse our complete API documentation, or check out our more detailed notebooks. cuDF can be installed with conda (miniconda, or the full Anaconda distribution) from the rapidsai channel. cuDF is supported only on Linux, and with Python versions 3.7 and later. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Quadratic

    Quadratic

    Data science spreadsheet with Python & SQL

    ...Our goal is to build a spreadsheet that enables you to pull your data from its source (SaaS, Database, CSV, API, etc) and then work with that data using the most popular data science tools today (Python, Pandas, SQL, JS, Excel Formulas, etc). Quadratic has no environment to configure. The grid runs entirely in the browser with no backend service. This makes our grids completely portable and very easy to share. Quadratic has Python library support built-in. Bring the latest open-source tools directly to your spreadsheet. Quickly write code and see the output in full detail. ...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 13
    DataFrames.jl

    DataFrames.jl

    In-memory tabular data in Julia

    ...It provides a familiar, flexible, and efficient interface for handling datasets, making it easy to load, manipulate, join, and analyze structured data. With syntax inspired by data frames in R and pandas in Python, it offers intuitive tools while taking advantage of Julia’s speed and type system. The package is actively maintained by the JuliaData community, with contributions from over 200 developers worldwide. It is widely used for data science, research, and production applications, supported by extensive documentation, tutorials, and a free Julia Academy course. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    seaborn

    seaborn

    Statistical data visualization in Python

    Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. Seaborn helps you explore and understand your data. Its plotting functions operate on dataframes and arrays containing whole datasets and internally perform the necessary semantic mapping and statistical aggregation to produce informative plots. Its dataset-oriented, declarative API lets you focus on what the different elements of...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    HyperTools

    HyperTools

    A Python toolbox for gaining geometric insights

    ...Simple API for customizing plot styles. Set of powerful data manipulation tools including hyperalignment, k-means clustering, normalizing and more. Support for lists of Numpy arrays, Pandas dataframes, text or (mixed) lists. Applying topic models and other text vectorization methods to text data. HyperTools is designed to facilitate dimensionality reduction-based visual explorations of high-dimensional data. The basic pipeline is to feed in a high-dimensional dataset (or a series of high-dimensional datasets) and, in a single function call, reduce the dimensionality of the dataset(s) and create a plot.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    tsfresh

    tsfresh

    Automatic extraction of relevant features from time series

    ...Without tsfresh, you would have to calculate all characteristics by hand. With tsfresh this process is automated and all your features can be calculated automatically. Further tsfresh is compatible with pythons pandas and scikit-learn APIs, two important packages for Data Science endeavours in python. The extracted features can be used to describe or cluster time series based on the extracted characteristics. Further, they can be used to build models that perform classification/regression tasks on the time series. Often the features give new insights into time series and their dynamics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    GemGIS

    GemGIS

    Spatial data processing for geomodeling

    GemGIS is a Python-based, open-source geographic information processing library. It is capable of preprocessing spatial data such as vector data (shape files, geojson files, geopackages,…), raster data (tif, png,…), data obtained from online services (WCS, WMS, WFS) or XML/KML files (soon). Preprocessed data can be stored in a dedicated Data Class to be passed to the geomodeling package GemPy in order to accelerate the model-building process. Postprocessing of model results will allow export...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TradingGym

    TradingGym

    Trading backtesting environment for training reinforcement learning

    TradingGym is a toolkit (in Python) for creating trading and backtesting environments, especially for reinforcement learning agents, but also for simpler rule-based algorithms. It follows a design inspired by OpenAI Gym, offering various environments, data formats (tick data and OHLC), and tools to simulate trading with costs, position limits, observation windows etc. Licensed under MIT. This training environment was originally designed for tickdata, but also supports OHLC data format. WIP....
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    PyNanoLab

    PyNanoLab

    data analysis and Visualization with matplotlib

    PyNanoLab contains a variety of tools to complete the data analysis, statistics, curve fitting, and basic machine learning application. Visualization in pynanolab is based on matplotlib. The setup tools is desinged to control and set-up all the details of the figure with a GUI.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    ipycytoscape

    ipycytoscape

    A Cytoscape Jupyter widget

    A widget enabling interactive graph visualization with cytoscape.js in JupyterLab and the Jupyter Notebook.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Temporal.jl

    Temporal.jl

    Time series implementation for the Julia language

    This package provides a flexible & efficient time series class, TS, for the Julia programming language. While still early in development, the overarching goal is for the class to be able to slice & dice data with the rapid prototyping speed of R's xts and Python's pandas packages, while retaining the performance one expects from Julia. See the documentation for a more in-depth look at the package and some of the pain points it may solve when doing technical research with time series data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Optopsy

    Optopsy

    A nimble options backtesting library for Python

    Optopsy is a Python-based, nimble backtesting and statistics library focused on evaluating options trading strategies like calls, puts, straddles, spreads, and more, using pandas-driven analysis. The csv_data() function is a convenience function. Under the hood it uses Panda's read_csv() function to do the import. There are other parameters that can help with loading the csv data, consult the code/future documentation to see how to use them. Optopsy is a small simple library that offloads the heavy work of backtesting option strategies, the API is designed to be simple and easy to implement into your regular Panda's data analysis workflow. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Zipline

    Zipline

    Zipline, a Pythonic algorithmic trading library

    Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backtesting and live-trading engine powering Quantopian -- a free, community-centered, hosted platform for building and executing trading strategies. Quantopian also offers a fully managed service for professionals that includes Zipline, Alphalens, Pyfolio, FactSet data, and more. Installing Zipline is slightly more involved than the average Python...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Jupytab

    Jupytab

    Display in Tableau data from Jupyter notebooks

    Jupytab allows you to explore in Tableau data which is generated dynamically by a Jupyter Notebook. You can thus create Tableau data sources in a very flexible way using all the power of Python. This is achieved by having Tableau access data through a web server created by Jupytab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    AlphaPy

    AlphaPy

    Python AutoML for Trading Systems and Sports Betting

    AlphaPy is a Python-based AutoML framework tailored for trading systems and sports betting applications. Built on popular libraries like scikit-learn and pandas, it enables data scientists and speculators to craft predictive models, ensemble strategies, and automated forecasting systems with minimal setup. Run machine learning models using scikit-learn, Keras, xgboost, LightGBM, and CatBoost. Generate blended or stacked ensembles. Create models for analyzing the markets with MarketFlow. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next