Showing 45 open source projects for "compiler python linux"

View related business solutions
  • Resolve Support Tickets 2x Faster​ with ServoDesk Icon
    Resolve Support Tickets 2x Faster​ with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    OptimalTransport.jl

    OptimalTransport.jl

    Optimal transport algorithms for Julia

    This package provides some Julia implementations of algorithms for computational optimal transport, including the Earth-Mover's (Wasserstein) distance, Sinkhorn algorithm for entropically regularized optimal transport as well as some variants or extensions. Notably, OptimalTransport.jl provides GPU acceleration through CUDA.jl and NNlibCUDA.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Sundials.jl

    Sundials.jl

    Julia interface to Sundials, including a nonlinear solver

    This is a suite for numerically solving differential equations written in Julia and available for use in Julia, Python, and R. The purpose of this package is to supply efficient Julia implementations of solvers for various differential equations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    OpenCL.jl

    OpenCL.jl

    OpenCL Julia bindings

    Julia interface for the OpenCL parallel computation API. This package aims to be a complete solution for OpenCL programming in Julia, similar in scope to PyOpenCL for Python. It provides a high level API for OpenCL to make programing hardware accelerators, such as GPUs, FPGAs, and DSPs, as well as multicore CPUs much less onerous.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    JDF.jl

    JDF.jl

    Julia DataFrames serialization format

    JDF is a DataFrames serialization format with the following goals, fast save and load times, compressed storage on disk, enabled disk-based data manipulation (not yet achieved), and support for machine learning workloads, e.g. mini-batch, sampling (not yet achieved). JDF stores a DataFrame in a folder with each column stored as a separate file. There is also a metadata.jls file that stores metadata about the original DataFrame. Collectively, the column files, the metadata file, and the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Graphs.jl

    Graphs.jl

    An optimized graphs package for the Julia programming language

    The goal of Graphs.jl is to offer a performant platform for network and graph analysis in Julia, following the example of libraries such as NetworkX in Python. Offers a set of simple, concrete graph implementations – SimpleGraph (for undirected graphs) and SimpleDiGraph (for directed graphs), an API for the development of more sophisticated graph implementations under the AbstractGraph type, and a large collection of graph algorithms with the same requirements as this API.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    InteractiveViz.jl

    InteractiveViz.jl

    Interactive visualization tools for Julia

    Julia already has a rich set of plotting tools in the form of the Plots and Makie ecosystems, and various backends for these. So why another plotting package? InteractiveViz is not a replacement for Plots or Makie, but rather a graphics pipeline system developed on top of Makie. It has a few objectives. To provide a simple API to visualize large or possibly infinite datasets (tens of millions of data points) easily. To enable interactivity, and be responsive even with large amounts of data....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Circuitscape.jl

    Circuitscape.jl

    Algorithms from circuit theory to predict connectivity

    Circuitscape is an open-source program that uses circuit theory to model connectivity in heterogeneous landscapes. Its most common applications include modeling the movement and gene flow of plants and animals, as well as identifying areas important for connectivity conservation. The new Circuitscape is built entirely in the Julia language, a new programming language for technical computing. Julia is built from the ground up to be fast. As such, this offers a number of advantages over the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    FiniteDifferences.jl

    FiniteDifferences.jl

    High accuracy derivatives, estimated via numerical finite differences

    FiniteDifferences.jl estimates derivatives with finite differences. See also the Python package FDM. FiniteDiff.jl and FiniteDifferences.jl are similar libraries: both calculate approximate derivatives numerically. You should definitely use one or the other, rather than the legacy Calculus.jl finite differencing, or reimplementing it yourself. At some point in the future, they might merge, or one might depend on the other.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 10
    DataFrames.jl

    DataFrames.jl

    In-memory tabular data in Julia

    DataFrames.jl is a powerful Julia package for working with in-memory tabular data. It provides a familiar, flexible, and efficient interface for handling datasets, making it easy to load, manipulate, join, and analyze structured data. With syntax inspired by data frames in R and pandas in Python, it offers intuitive tools while taking advantage of Julia’s speed and type system. The package is actively maintained by the JuliaData community, with contributions from over 200 developers...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Tokenize.jl

    Tokenize.jl

    Tokenization for Julia source code

    Tokenize is a Julia package that serves a similar purpose and API as the tokenize module in Python but for Julia. This is to take a string or buffer containing Julia code, perform lexical analysis and return a stream of tokens.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    NBInclude.jl

    NBInclude.jl

    import code from IJulia Jupyter notebooks into Julia programs

    NBInclude is a package for the Julia language that allows you to include and execute IJulia (Julia-language Jupyter) notebook files just as you would include an ordinary Julia file. The goal of this package is to make notebook files just as easy to incorporate into Julia programs as ordinary Julia (.jl) files, giving you the advantages of a notebook (integrated code, formatted text, equations, graphics, and other results) while retaining the modularity and re-usability of .jl files.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Bayesian Julia

    Bayesian Julia

    Bayesian Statistics using Julia and Turing

    Bayesian statistics is an approach to inferential statistics based on Bayes' theorem, where available knowledge about parameters in a statistical model is updated with the information in observed data. The background knowledge is expressed as a prior distribution and combined with observational data in the form of a likelihood function to determine the posterior distribution. The posterior can also be used for making predictions about future events. Bayesian statistics is a departure from...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CxxWrap

    CxxWrap

    Package to make C++ libraries available in Julia

    This package aims to provide a Boost. Python-like wrapping for C++ types and functions to Julia. The idea is to write the code for the Julia wrapper in C++, and then use a one-liner on the Julia side to make the wrapped C++ library available there. The mechanism behind this package is that functions and types are registered in C++ code that is compiled into a dynamic library. This dynamic library is then loaded into Julia, where the Julia part of this package uses the data provided through a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    EllipsisNotation.jl

    EllipsisNotation.jl

    Julia-based implementation of ellipsis array indexing notation

    Julia-based implementation of ellipsis array indexing notation. This implements the notation .. for indexing arrays. It's similar to Python, in that it means "all the columns before (or after)". Note: .. slurps dimensions greedily, meaning that the first occurrence of .. in an index expression creates as many slices as possible. Other instances of .. afterward are treated simply as slices. Usually, you should only use one instance of .. in an indexing expression to avoid possible confusion.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    LabPlot

    LabPlot

    Data Visualization and Analysis

    LabPlot is a FREE, open source and cross-platform Data Visualization and Analysis software accessible to everyone.
    Downloads: 60 This Week
    Last Update:
    See Project
  • 17
    Kinetic.jl

    Kinetic.jl

    Universal modeling and simulation of fluid mechanics upon ML

    Kinetic is a computational fluid dynamics toolbox written in Julia. It aims to furnish efficient modeling and simulation methodologies for fluid dynamics, augmented by the power of machine learning. Based on differentiable programming, mechanical and neural network models are fused and solved in a unified framework. Simultaneous 1-3 dimensional numerical simulations can be performed on CPUs and GPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    ScikitLearn.jl

    ScikitLearn.jl

    Julia implementation of the scikit-learn API

    The scikit-learn Python library has proven very popular with machine learning researchers and data scientists in the last five years. It provides a uniform interface for training and using models, as well as a set of tools for chaining (pipelines), evaluating, and tuning model hyperparameters. ScikitLearn.jl brings these capabilities to Julia. Its primary goal is to integrate both Julia- and Python-defined models together into the scikit-learn framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Indicators.jl

    Indicators.jl

    Financial market technical analysis & indicators in Julia

    Indicators is a Julia package offering efficient implementations of many technical analysis indicators and algorithms. This work is inspired by the TTR package in R and the Python implementation of TA-Lib, and the ultimate goal is to implement all of the functionality of these offerings (and more) in Julia. This package has been written to be able to interface with both native Julia Array types, as well as the TS time series type from the Temporal package. Contributions are of course always...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Spark.jl

    Spark.jl

    Julia binding for Apache Spark

    A Julia interface to Apache Spark. Spark.jl provides an interface to Apache Spark™ platform, including SQL / DataFrame and Structured Streaming. It closely follows the PySpark API, making it easy to translate existing Python code to Julia. Spark.jl supports multiple cluster types (in client mode), and can be considered as an analog to PySpark or RSpark within the Julia ecosystem. It supports running within on-premise installations, as well as hosted instances such as Amazon EMR and Azure...
    Downloads: 0 This Week
    Last Update:
    See Project