Showing 535 open source projects for "model-builder"

View related business solutions
  • Top-Rated Free CRM Software Icon
    Top-Rated Free CRM Software

    216,000+ customers in over 135 countries grow their businesses with HubSpot

    HubSpot is an AI-powered customer platform with all the software, integrations, and resources you need to connect your marketing, sales, and customer service. HubSpot's connected platform enables you to grow your business faster by focusing on what matters most: your customers.
    Get started free
  • Bright Data - All in One Platform for Proxies and Web Scraping Icon
    Bright Data - All in One Platform for Proxies and Web Scraping

    Say goodbye to blocks, restrictions, and CAPTCHAs

    Bright Data offers the highest quality proxies with automated session management, IP rotation, and advanced web unlocking technology. Enjoy reliable, fast performance with easy integration, a user-friendly dashboard, and enterprise-grade scaling. Powered by ethically-sourced residential IPs for seamless web scraping.
    Get Started
  • 1
    Amazon Kinesis Flink Connectors

    Amazon Kinesis Flink Connectors

    Contains various Apache Flink connectors to connect to AWS data

    ... with the Apache Flink framework. You author and build your Apache Flink application locally. Applications primarily use either the DataStream API or the Table API. The other Apache Flink APIs are also available for you to use, but they are less commonly used in building streaming applications. The Apache Flink DataStream API programming model is based on two components.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    LIBSVM.jl

    LIBSVM.jl

    LIBSVM bindings for Julia

    LIBSVM bindings for Julia. This is a Julia interface for LIBSVM and for the linear SVM model provided by LIBLINEAR. Supports all LIBSVM models: classification C-SVC, nu-SVC, regression: epsilon-SVR, nu-SVR and distribution estimation: one-class SVM. Model objects are represented by Julia-type SVM which gives you easy access to model features and can be saved e.g. as JLD file.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    NannyML is an open-source python library that allows you to estimate post-deployment model performance (without access to targets), detect data drift, and intelligently link data drift alerts back to changes in model performance. Built for data scientists, NannyML has an easy-to-use interface, and interactive visualizations, is completely model-agnostic, and currently supports all tabular classification use cases. NannyML closes the loop with performance monitoring and post deployment data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Red Hat Enterprise Linux on Microsoft Azure Icon
    Red Hat Enterprise Linux on Microsoft Azure

    Deploy Red Hat Enterprise Linux on Microsoft Azure for a secure, reliable, and scalable cloud environment, fully integrated with Microsoft services.

    Red Hat Enterprise Linux (RHEL) on Microsoft Azure provides a secure, reliable, and flexible foundation for your cloud infrastructure. Red Hat Enterprise Linux on Microsoft Azure is ideal for enterprises seeking to enhance their cloud environment with seamless integration, consistent performance, and comprehensive support.
    Learn More
  • 5
    Yggdrasil

    Yggdrasil

    Collection of builder repositories for BinaryBuilder.jl

    This repository contains recipes for building binaries for Julia packages using BinaryBuilder.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Qualitis

    Qualitis

    Qualitis is a one-stop data quality management platform

    Qualitis is a data quality management platform that supports quality verification, notification, and management for various datasource. It is used to solve various data quality problems caused by data processing. Based on Spring Boot, Qualitis submits quality model task to Linkis platform. It provides functions such as data quality model construction, data quality model execution, data quality verification, reports of data quality generation and so on. At the same time, Qualitis provides...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ModelingToolkitStandardLibrary.jl

    ModelingToolkitStandardLibrary.jl

    A standard library of components to model the world and beyond

    The ModelingToolkit Standard Library is a standard library of components to model the world and beyond.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. Reproduce any model, with saved code...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The #1 Embedded Analytics Solution for SaaS Teams. Icon
    The #1 Embedded Analytics Solution for SaaS Teams.

    Qrvey saves engineering teams time and money with a turnkey multi-tenant solution connecting your data warehouse to your SaaS application.

    Qrvey’s comprehensive embedded analytics software enables you to design more customizable analytics experiences for your end users.
    Try Developer Playground
  • 10
    BinaryBuilder

    BinaryBuilder

    Binary Dependency Builder for Julia

    Binary Dependency Builder for Julia. Building binary packages is a pain. BinaryBuilder follows a philosophy that is similar to that of building Julia itself; when you want something done right, you do it yourself. To that end, BinaryBuilder is designed from the ground up to facilitate the building of packages within an easily reproducible and reliable Linux environment, ensuring that the built libraries and executables are deployable to every platform that Julia itself will run on. Packages...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Wflow.jl

    Wflow.jl

    Hydrological modeling

    ... model concepts are available, which maximizes the use of open earth observation data, making it the hydrological model of choice for data-scarce environments. Based on gridded topography, soil, land use and climate data, wflow calculates all hydrological fluxes at any given grid cell in the model at a given time step.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Phoenix

    Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Surrogates.jl

    Surrogates.jl

    Surrogate modeling and optimization for scientific machine learning

    A surrogate model is an approximation method that mimics the behavior of a computationally expensive simulation. In more mathematical terms: suppose we are attempting to optimize a function f(p), but each calculation of f is very expensive. It may be the case we need to solve a PDE for each point or use advanced numerical linear algebra machinery, which is usually costly. The idea is then to develop a surrogate model g which approximates f by training on previous data collected from evaluations...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Bayesian Statistics

    Bayesian Statistics

    This repository holds slides and code for a full Bayesian statistics

    This repository holds slides and code for a full Bayesian statistics graduate course. Bayesian statistics is an approach to inferential statistics based on Bayes' theorem, where available knowledge about parameters in a statistical model is updated with the information in observed data. The background knowledge is expressed as a prior distribution and combined with observational data in the form of a likelihood function to determine the posterior distribution. The posterior can also be used...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ArviZ.jl

    ArviZ.jl

    Exploratory analysis of Bayesian models with Julia

    ArviZ.jl (pronounced "AR-vees") is a Julia package for exploratory analysis of Bayesian models. It includes functions for posterior analysis, model checking, comparison and diagnostics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ExplainableAI.jl

    ExplainableAI.jl

    Explainable AI in Julia

    This package implements interpretability methods for black box models, with a focus on local explanations and attribution maps in input space. It is similar to Captum and Zennit for PyTorch and iNNvestigate for Keras models. Most of the implemented methods only require the model to be differentiable with Zygote. Layerwise Relevance Propagation (LRP) is implemented for use with Flux.jl models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    UMAP.jl

    UMAP.jl

    Uniform Manifold Approximation and Projection (UMAP) implementation

    A pure Julia implementation of the Uniform Manifold Approximation and Projection dimension reduction algorithm. The umap function takes two arguments, X (a column-major matrix of shape (n_features, n_samples)), n_components (the number of dimensions in the output embedding), and various keyword arguments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    JuliaConnectoR

    JuliaConnectoR

    A functionally oriented interface for calling Julia from R

    This R-package provides a functionally oriented interface between R and Julia. The goal is to call functions from Julia packages directly as R functions. Julia functions imported via the JuliaConnectoR can accept and return R variables. It is also possible to pass R functions as arguments in place of Julia functions, which allows callbacks from Julia to R. From a technical perspective, R data structures are serialized with an optimized custom streaming format, sent to a (local) Julia TCP...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MLJBase.jl

    MLJBase.jl

    Core functionality for the MLJ machine learning framework

    Repository for developers that provides core functionality for the MLJ machine learning framework. MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PowerSystems.jl

    PowerSystems.jl

    Data structures in Julia to enable power systems analysis

    The PowerSystems.jl package provides a rigorous data model using Julia structures to enable power systems analysis and modeling. In addition to stand-alone system analysis tools and data model building, the PowerSystems.jl package is used as the foundational data container for the PowerSimulations.jl and PowerSimulationsDynamics.jl packages. PowerSystems.jl supports a limited number of data file formats for parsing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Encord Active

    Encord Active

    The toolkit to test, validate, and evaluate your models and surface

    Encord Active is an open-source toolkit to test, validate, and evaluate your models and surface, curate, and prioritize the most valuable data for labeling to supercharge model performance. Encord Active has been designed as a all-in-one open source toolkit for improving your data quality and model performance. Use the intuitive UI to explore your data or access all the functionalities programmatically. Discover errors, outliers, and edge-cases within your data - all in one open source toolkit...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    nichenetr

    nichenetr

    NicheNet: predict active ligand-target links between interacting cells

    nichenetr: the R implementation of the NicheNet method. The goal of NicheNet is to study intercellular communication from a computational perspective. NicheNet uses human or mouse gene expression data of interacting cells as input and combines this with a prior model that integrates existing knowledge on ligand-to-target signaling paths. This allows to predict ligand-receptor interactions that might drive gene expression changes in cells of interest. This model of prior information on potential...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    whylogs

    whylogs

    The open standard for data logging

    whylogs is an open-source library for logging any kind of data. With whylogs, users are able to generate summaries of their datasets (called whylogs profiles) which they can use to track changes in their dataset Create data constraints to know whether their data looks the way it should. Quickly visualize key summary statistics about their datasets. whylogs profiles are the core of the whylogs library. They capture key statistical properties of data, such as the distribution (far beyond...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Cleanlab

    Cleanlab

    The standard data-centric AI package for data quality and ML

    ... label issues and other data issues, so you can train reliable ML models. All features of cleanlab work with any dataset and any model. Yes, any model: PyTorch, Tensorflow, Keras, JAX, HuggingFace, OpenAI, XGBoost, scikit-learn, etc. If you use a sklearn-compatible classifier, all cleanlab methods work out-of-the-box.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime...
    Downloads: 0 This Week
    Last Update:
    See Project