Showing 534 open source projects for "model-builder"

View related business solutions
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • Data Collection and Labeling for AI Innovation. Icon
    Data Collection and Labeling for AI Innovation.

    For AI startups and developers in need of globally diverse, high-quality datasets that are fully traceable to accelerate machine learning innovation.

    OORT DataHub is a blockchain-powered platform where people across the world can collect and pre-process data including images, audios, or videos to improve AI and machine learning models.
    Learn More
  • 1
    XState

    XState

    State machines and statecharts for the modern web

    JavaScript and TypeScript finite state machines and statecharts for the modern web. Statecharts are a formalism for modeling stateful, reactive systems. This is useful for declaratively describing the behavior of your application, from the individual components to the overall application logic. XState is a library for creating, interpreting, and executing finite state machines and statecharts, as well as managing invocations of those machines as actors. The following fundamental computer...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    LIBSVM.jl

    LIBSVM.jl

    LIBSVM bindings for Julia

    LIBSVM bindings for Julia. This is a Julia interface for LIBSVM and for the linear SVM model provided by LIBLINEAR. Supports all LIBSVM models: classification C-SVC, nu-SVC, regression: epsilon-SVR, nu-SVR and distribution estimation: one-class SVM. Model objects are represented by Julia-type SVM which gives you easy access to model features and can be saved e.g. as JLD file.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    NannyML is an open-source python library that allows you to estimate post-deployment model performance (without access to targets), detect data drift, and intelligently link data drift alerts back to changes in model performance. Built for data scientists, NannyML has an easy-to-use interface, and interactive visualizations, is completely model-agnostic, and currently supports all tabular classification use cases. NannyML closes the loop with performance monitoring and post deployment data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Yggdrasil

    Yggdrasil

    Collection of builder repositories for BinaryBuilder.jl

    This repository contains recipes for building binaries for Julia packages using BinaryBuilder.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • NeoLoad is a very comprehensive tool if you are looking for a performance test tool for web applications and other applications Icon
    NeoLoad is a very comprehensive tool if you are looking for a performance test tool for web applications and other applications

    Continuous performance testing

    Your applications are all built differently, but they all need to perform. NeoLoad simplifies and scales performance testing for everything, from APIs and microservices, to end-to-end application testing through innovative protocol and browser-based capabilities.
    Learn More
  • 5
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Qualitis

    Qualitis

    Qualitis is a one-stop data quality management platform

    Qualitis is a data quality management platform that supports quality verification, notification, and management for various datasource. It is used to solve various data quality problems caused by data processing. Based on Spring Boot, Qualitis submits quality model task to Linkis platform. It provides functions such as data quality model construction, data quality model execution, data quality verification, reports of data quality generation and so on. At the same time, Qualitis provides...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    ModelingToolkitStandardLibrary.jl

    ModelingToolkitStandardLibrary.jl

    A standard library of components to model the world and beyond

    The ModelingToolkit Standard Library is a standard library of components to model the world and beyond.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Mixed-effects models in Julia

    Mixed-effects models in Julia

    A Julia package for fitting (statistical) mixed-effects models

    This package defines linear mixed models (LinearMixedModel) and generalized linear mixed models (GeneralizedLinearMixedModel). Users can use the abstraction for statistical model API to build, fit (fit/fit!), and query the fitted models. A mixed-effects model is a statistical model for a response variable as a function of one or more covariates. For a categorical covariate the coefficients associated with the levels of the covariate are sometimes called effects, as in "the effect of using...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    BinaryBuilder

    BinaryBuilder

    Binary Dependency Builder for Julia

    Binary Dependency Builder for Julia. Building binary packages is a pain. BinaryBuilder follows a philosophy that is similar to that of building Julia itself; when you want something done right, you do it yourself. To that end, BinaryBuilder is designed from the ground up to facilitate the building of packages within an easily reproducible and reliable Linux environment, ensuring that the built libraries and executables are deployable to every platform that Julia itself will run on. Packages...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Embedded Analytics for Demanding SaaS Teams Icon
    Embedded Analytics for Demanding SaaS Teams

    icCube is a Dev2Dev platform for B2B software and SaaS companies to empower their customers with embedded analytics and dashboards.

    Dashboards will seamlessly blend into the SaaS solution’s UI and UX experience, while resting on top of icCube’s robust analytical engine, allowing to consume complex data models needing sophisticated data security.
    Learn More
  • 10
    Wflow.jl

    Wflow.jl

    Hydrological modeling

    ... model concepts are available, which maximizes the use of open earth observation data, making it the hydrological model of choice for data-scarce environments. Based on gridded topography, soil, land use and climate data, wflow calculates all hydrological fluxes at any given grid cell in the model at a given time step.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Surrogates.jl

    Surrogates.jl

    Surrogate modeling and optimization for scientific machine learning

    A surrogate model is an approximation method that mimics the behavior of a computationally expensive simulation. In more mathematical terms: suppose we are attempting to optimize a function f(p), but each calculation of f is very expensive. It may be the case we need to solve a PDE for each point or use advanced numerical linear algebra machinery, which is usually costly. The idea is then to develop a surrogate model g which approximates f by training on previous data collected from evaluations...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    ArviZ.jl

    ArviZ.jl

    Exploratory analysis of Bayesian models with Julia

    ArviZ.jl (pronounced "AR-vees") is a Julia package for exploratory analysis of Bayesian models. It includes functions for posterior analysis, model checking, comparison and diagnostics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    ExplainableAI.jl

    ExplainableAI.jl

    Explainable AI in Julia

    This package implements interpretability methods for black box models, with a focus on local explanations and attribution maps in input space. It is similar to Captum and Zennit for PyTorch and iNNvestigate for Keras models. Most of the implemented methods only require the model to be differentiable with Zygote. Layerwise Relevance Propagation (LRP) is implemented for use with Flux.jl models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    UMAP.jl

    UMAP.jl

    Uniform Manifold Approximation and Projection (UMAP) implementation

    A pure Julia implementation of the Uniform Manifold Approximation and Projection dimension reduction algorithm. The umap function takes two arguments, X (a column-major matrix of shape (n_features, n_samples)), n_components (the number of dimensions in the output embedding), and various keyword arguments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    JuliaConnectoR

    JuliaConnectoR

    A functionally oriented interface for calling Julia from R

    This R-package provides a functionally oriented interface between R and Julia. The goal is to call functions from Julia packages directly as R functions. Julia functions imported via the JuliaConnectoR can accept and return R variables. It is also possible to pass R functions as arguments in place of Julia functions, which allows callbacks from Julia to R. From a technical perspective, R data structures are serialized with an optimized custom streaming format, sent to a (local) Julia TCP...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    MLJBase.jl

    MLJBase.jl

    Core functionality for the MLJ machine learning framework

    Repository for developers that provides core functionality for the MLJ machine learning framework. MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    PowerSystems.jl

    PowerSystems.jl

    Data structures in Julia to enable power systems analysis

    The PowerSystems.jl package provides a rigorous data model using Julia structures to enable power systems analysis and modeling. In addition to stand-alone system analysis tools and data model building, the PowerSystems.jl package is used as the foundational data container for the PowerSimulations.jl and PowerSimulationsDynamics.jl packages. PowerSystems.jl supports a limited number of data file formats for parsing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Laravel Wallet

    Laravel Wallet

    Easy work with virtual wallet

    laravel-wallet - Easy to work with virtual wallet.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Encord Active

    Encord Active

    The toolkit to test, validate, and evaluate your models and surface

    Encord Active is an open-source toolkit to test, validate, and evaluate your models and surface, curate, and prioritize the most valuable data for labeling to supercharge model performance. Encord Active has been designed as a all-in-one open source toolkit for improving your data quality and model performance. Use the intuitive UI to explore your data or access all the functionalities programmatically. Discover errors, outliers, and edge-cases within your data - all in one open source toolkit...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    whylogs

    whylogs

    The open standard for data logging

    whylogs is an open-source library for logging any kind of data. With whylogs, users are able to generate summaries of their datasets (called whylogs profiles) which they can use to track changes in their dataset Create data constraints to know whether their data looks the way it should. Quickly visualize key summary statistics about their datasets. whylogs profiles are the core of the whylogs library. They capture key statistical properties of data, such as the distribution (far beyond...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Cleanlab

    Cleanlab

    The standard data-centric AI package for data quality and ML

    ... label issues and other data issues, so you can train reliable ML models. All features of cleanlab work with any dataset and any model. Yes, any model: PyTorch, Tensorflow, Keras, JAX, HuggingFace, OpenAI, XGBoost, scikit-learn, etc. If you use a sklearn-compatible classifier, all cleanlab methods work out-of-the-box.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    GoJS

    GoJS

    JavaScript diagramming library for interactive flowcharts & org charts

    Build interactive flowcharts or flow diagrams. Let your users build, modify, and save diagrams with JSON model output. Visualize state charts and other behavior diagrams. Create diagrams with live updates to monitor state, or interactive diagrams for planning. GoJS allows considerable customization of links and nodes to build all kinds of diagrams. Visualize flow, or connect pipes. Create genogram and medical diagrams, or editable family trees with collapsible levels. Create classic org charts...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    badaso

    badaso

    Laravel Vue headless CMS / admin panel / dashboard / builder

    Badaso provides awesome database management features that can create tables, modify tables, delete tables, migrate tables, and delete migration files. Simply put, Badaso provides database management features without the need to create migration files using artisan laravel. Badaso provides a crud generator feature to make it easy to create CRUDs without having to code. Simplify API development for users, teams, and enterprises with our open source and professional toolset. Badaso provides...
    Downloads: 0 This Week
    Last Update:
    See Project