Showing 2 open source projects for "gpu processing"

View related business solutions
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • AI-based, Comprehensive Service Management for Businesses and IT Providers Icon
    AI-based, Comprehensive Service Management for Businesses and IT Providers

    Modular solutions for change management, asset management and more

    ChangeGear provides IT staff with the functions required to manage everything from ticketing to incident, change and asset management and more. ChangeGear includes a virtual agent, self-service portals and AI-based features to support analyst and end user productivity.
    Learn More
  • 1
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    ...These data processing pipelines, which are currently executed on the CPU, have become a bottleneck, limiting the performance and scalability of training and inference. DALI addresses the problem of the CPU bottleneck by offloading data preprocessing to the GPU. Additionally, DALI relies on its own execution engine, built to maximize the throughput of the input pipeline.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    SageMaker MXNet Inference Toolkit is an open-source library for serving MXNet models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next