42 projects for "tensorflow" with 1 filter applied:

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    frugally-deep

    frugally-deep

    A lightweight header-only library for using Keras (TensorFlow) models

    Use Keras models in C++ with ease. A lightweight header-only library for using Keras (TensorFlow) models in C++. Works out-of-the-box also when compiled into a 32-bit executable. (Of course, 64 bit is fine too.) Avoids temporarily allocating (potentially large chunks of) additional RAM during convolutions (by not materializing the im2col input matrix). Utterly ignores even the most powerful GPU in your system and uses only one CPU core per prediction.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Frigate

    Frigate

    NVR with realtime local object detection for IP cameras

    Frigate - NVR With Realtime Object Detection for IP Cameras A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
    Downloads: 32 This Week
    Last Update:
    See Project
  • 3
    handson-ml3

    handson-ml3

    Fundamentals of Machine Learning and Deep Learning

    handson-ml3 contains the Jupyter notebooks and code for the third edition of the book Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. It guides readers through modern machine learning and deep learning workflows using Python, with examples spanning data preparation, supervised and unsupervised learning, deep neural networks, RL, and production-ready model deployment. The third edition updates the content for TensorFlow 2 and Keras, introduces new chapters (for example on reinforcement learning or generative models), and offers best-practice code that reflects current ecosystems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    OPENRNDR

    OPENRNDR

    Kotlin library for creative coding, real-time and interactive graphics

    ...You can use OPENRNDR to visualize the data coming from these models in order to create compelling (interactive) experiences. The ORML library includes both models and interface code to make the use of those models simple. ORML is built on top of orx-tensorflow which is an OPENRNDR extra that provides tools to wrap and convert between Tensorflow and OPENRNDR primitives. With these integrations, Machine Learning has become more accessible for interactive designers, coders, and developers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    ...For more information, see NVIDIA Merlin on the NVIDIA developer website. Transform data (ETL) for preprocessing and engineering features. Accelerate your existing training pipelines in TensorFlow, PyTorch, or FastAI by leveraging optimized, custom-built data loaders. Scale large deep learning recommender models by distributing large embedding tables that exceed available GPU and CPU memory. Deploy data transformations and trained models to production with only a few lines of code.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Lingvo

    Lingvo

    Framework for building neural networks

    Lingvo is a TensorFlow based framework focused on building and training sequence models, especially for language and speech tasks. It was originally developed for internal research and later open sourced to support reproducible experiments and shared model implementations. The framework provides a structured way to define models, input pipelines, and training configurations using a common interface for layers, which encourages reuse across different tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated learning workloads from research and simulation to real-world production deployment.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Transformers4Rec

    Transformers4Rec

    Transformers4Rec is a flexible and efficient library

    Transformers4Rec is an advanced recommendation system library that leverages Transformer models for sequential and session-based recommendations. The library works as a bridge between natural language processing (NLP) and recommender systems (RecSys) by integrating with one of the most popular NLP frameworks, Hugging Face Transformers (HF). Transformers4Rec makes state-of-the-art transformer architectures available for RecSys researchers and industry practitioners. Traditional recommendation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 10
    Blazeface

    Blazeface

    Blazeface is a lightweight model that detects faces in images

    Blazeface is a lightweight, high-performance face detection model designed for mobile and embedded devices, developed by TensorFlow. It is optimized for real-time face detection tasks and runs efficiently on mobile CPUs, ensuring minimal latency and power consumption. Blazeface is based on a fast architecture and uses deep learning techniques to detect faces with high accuracy, even in challenging conditions. It supports multiple face detection in varying lighting and poses, and is designed to work in real-world applications like mobile apps, robotics, and other resource-constrained environments.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 11
    MobileNetV2

    MobileNetV2

    SSD-based object detection model trained on Open Images V4

    ...MobileNetV2 is commonly used for image classification, object detection, and other computer vision tasks, achieving high accuracy while maintaining a small memory footprint. It also supports TensorFlow Lite for mobile device deployment, ensuring that developers can leverage its performance on a wide range of platforms.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 12
    MoveNet

    MoveNet

    A CNN model that predicts human joints from RGB images of a person

    The MoveNet model is an efficient, real-time human pose estimation system designed for detecting and tracking keypoints of human bodies. It utilizes deep learning to accurately locate 17 key points across the body, providing precise tracking even with fast movements. Optimized for mobile and embedded devices, MoveNet can be integrated into applications for fitness tracking, augmented reality, and interactive systems.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Universal Sentence Encoder

    Universal Sentence Encoder

    Encoder of greater-than-word length text trained on a variety of data

    The Universal Sentence Encoder (USE) is a pre-trained deep learning model designed to encode sentences into fixed-length embeddings for use in various natural language processing (NLP) tasks. It leverages Transformer and Deep Averaging Network (DAN) architectures to generate embeddings that capture the semantic meaning of sentences. The model is designed for tasks like sentiment analysis, semantic textual similarity, and clustering, and provides high-quality sentence representations in a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    KotlinDL

    KotlinDL

    High-level Deep Learning Framework written in Kotlin

    KotlinDL is a high-level Deep Learning API written in Kotlin and inspired by Keras. Under the hood, it uses TensorFlow Java API and ONNX Runtime API for Java. KotlinDL offers simple APIs for training deep learning models from scratch, importing existing Keras and ONNX models for inference, and leveraging transfer learning for tailoring existing pre-trained models to your tasks. This project aims to make Deep Learning easier for JVM and Android developers and simplify deploying deep learning models in production environments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    LM Human Preferences

    LM Human Preferences

    Code for the paper Fine-Tuning Language Models from Human Preferences

    ...The code is provided “as is” and explicitly says it may no longer run out-of-the-box due to dependencies or dataset migrations. It was tested on the smallest GPT-2 (124M parameters) under a specific environment (TensorFlow 1.x, specific CUDA / cuDNN combinations). It includes utilities for launching experiments, sampling from policies, and simple experiment orchestration.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    d2l-zh

    d2l-zh

    Chinese-language edition of Dive into Deep Learning

    d2l‑zh is the Chinese-language edition of Dive into Deep Learning, an interactive, open‑source deep learning textbook that combines code, math, and explanatory text. It features runnable Jupyter notebooks compatible with multiple frameworks (e.g., PyTorch, MXNet, TensorFlow), comprehensive theoretical analysis, and exercises. Widely adopted in over 70 countries and used by more than 500 universities for teaching deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    handson-ml

    handson-ml

    Teaching you the fundamentals of Machine Learning in python

    handson-ml hosts the notebooks for the first edition of the same hands-on ML book, reflecting the tooling and idioms of its time while teaching durable concepts. It walks through supervised and unsupervised learning with scikit-learn, then introduces deep learning using the earlier TensorFlow 1 graph-execution style. The examples underscore fundamentals like bias-variance trade-offs, regularization, and proper validation, grounding learners before they move to deep nets. Even though the deep learning stack evolved, the classical ML sections remain highly relevant for production data problems. The code is crafted to be clear rather than clever, prioritizing readability for newcomers. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    tf2_course

    tf2_course

    Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

    tf2_course provides the notebooks for the “Deep Learning with TensorFlow 2 and Keras” course authored by the same author, Aurélien Géron. It is structured as a teaching toolkit: you’ll find notebooks covering neural networks with Keras, lower-level TensorFlow APIs, data loading & preprocessing, convolutional and recurrent networks, and deployment/distribution of models. The material is intended for learners who already have foundational knowledge of ML and wish to deepen their understanding of deep learning frameworks and practices. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Acme

    Acme

    A library of reinforcement learning components and agents

    Acme is a framework from DeepMind for building scalable and reproducible reinforcement learning agents. It emphasizes modular components, distributed training, and ease of experimentation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    TensorFlow Examples

    TensorFlow Examples

    TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

    TensorFlow Examples is a comprehensive repository of example implementations, tutorials, and reference code intended to help newcomers and intermediate learners dive into TensorFlow quickly. It contains both Jupyter notebooks and raw source code, covering a broad range of tasks: from basic machine-learning and neural-network models to more advanced use cases, using both TensorFlow v1 and v2 APIs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    TensorNetwork

    TensorNetwork

    A library for easy and efficient manipulation of tensor networks

    ...The library provides automatic path finding and cost estimation, exposing when contractions will explode in memory and suggesting better orders. Because it supports backends such as NumPy, TensorFlow, PyTorch, and JAX, the same model can run on CPUs, GPUs, or TPUs with minimal code changes. Tutorials and visualization helpers make it easier to understand how network topology affects expressive power and computational cost.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TensorFlowTTS

    TensorFlowTTS

    Real-Time State-of-the-art Speech Synthesis for Tensorflow 2

    TensorFlowTTS is a state-of-the-art, open-source speech synthesis library built on TensorFlow 2. It offers a variety of architectures for text-to-speech, including classic and modern models such as Tacotron‑2, FastSpeech / FastSpeech2, and neural vocoders like MelGAN and Multiband‑MelGAN. Because it’s based on TensorFlow 2, it can leverage optimizations such as fake-quantization aware training and pruning — which allow models to run faster than real time and to be deployable on mobile or embedded platforms. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    VAD

    VAD

    Voice activity detection (VAD) toolkit including DNN, bDNN, LSTM

    ...Acoustic feature extraction (multi-resolution cochleagram, MRCG). Post-processing modules (e.g. smoothing, thresholds). The toolkit supports both MATLAB and Python/TensorFlow components (for feature extraction, classification, postprocessing). Acoustic feature extraction (multi-resolution cochleagram, MRCG). Provided real-world dataset with manual annotations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Transformer TTS

    Transformer TTS

    Implementation of a Transformer based neural network

    TransformerTTS is an implementation of a non-autoregressive Transformer-based neural network for text-to-speech, built with TensorFlow 2. It takes inspiration from architectures like FastSpeech, FastSpeech 2, FastPitch, and Transformer TTS, and extends them with its own aligner and forward models. The system separates alignment learning and acoustic modeling: an autoregressive Transformer is used as an aligner to extract phoneme-to-frame durations, while a non-autoregressive “ForwardTransformer” generates mel-spectrograms conditioned on text and durations. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Top Deep Learning Projects

    Top Deep Learning Projects

    A list of popular github projects related to deep learning

    ...Rather than being a library itself, it serves as a curated roadmap and reference guide for anyone exploring the deep learning ecosystem — from beginners to experienced practitioners. By aggregating high-star projects across frameworks (TensorFlow, PyTorch), tools (computer vision, NLP, reinforcement learning), tutorials, and research code, it helps users quickly discover reputable and well-maintained repositories. This way one can survey state-of-the-art projects, find learning resources, or pick stable libraries for production — without manually sifting through hundreds of repos. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next