Search Results for "neural network code in matlab"

40 projects for "neural network code in matlab" with 1 filter applied:

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 1
    Screenshot to Code

    Screenshot to Code

    A neural network that transforms a design mock-up into static websites

    Screenshot-to-code is a tool or prototype that attempts to convert UI screenshots (e.g., of mobile or web UIs) into code representations, likely generating layouts, HTML, CSS, or markup from image inputs. It is part of a research/proof-of-concept domain in UI automation and image-to-UI code generation. Mapping visual design to code constructs. Code/UI layout (HTML, CSS, or markup). Examples/demo scripts showing “image UI code”.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    FairChem

    FairChem

    FAIR Chemistry's library of machine learning methods for chemistry

    FAIRChem is a unified library for machine learning in chemistry and materials, consolidating data, pretrained models, demos, and application code into a single, versioned toolkit. Version 2 modernizes the stack with a cleaner core package and breaking changes relative to V1, focusing on simpler installs and a stable API surface for production and research. The centerpiece models (e.g., UMA variants) plug directly into the ASE ecosystem via a FAIRChem calculator, so users can run relaxations,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Build your own X

    Build your own X

    Master programming by recreating your favorite technologies

    build-your-own-x is a massive, community-curated roadmap of hands-on tutorials that teach you to re-implement complex systems from scratch—things like databases, compilers, operating systems, interpreters, web servers, neural networks, regex engines, and more. Rather than offering abstract theory, it organizes step-by-step guides by topic and by programming language, so you can pick a project that fits your stack and skill level. The focus is on demystifying internals: you don’t just use a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    GeoTools, the Java GIS toolkit

    GeoTools, the Java GIS toolkit

    Toolkit for working with and mapping geospatial data

    GeoTools is an open source (LGPL) Java code library which provides standards compliant methods for the manipulation of geospatial data. GeoTools is an Open Source Geospatial Foundation project. The GeoTools library data structures are based on Open Geospatial Consortium (OGC) specifications.
    Leader badge
    Downloads: 279 This Week
    Last Update:
    See Project
  • 6
    Neural Network Visualization

    Neural Network Visualization

    Project for processing neural networks and rendering to gain insights

    nn_vis is a minimalist visualization tool for neural networks written in Python using OpenGL and Pygame. It provides an interactive, graphical representation of how data flows through neural network layers, offering a unique educational experience for those new to deep learning or looking to explain it visually. By animating input, weights, activations, and outputs, the tool demystifies neural network operations and helps users intuitively grasp complex concepts. Its lightweight codebase is...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    NeuMan

    NeuMan

    Neural Human Radiance Field from a Single Video (ECCV 2022)

    NeuMan is a reference implementation that reconstructs both an animatable human and its background scene from a single monocular video using neural radiance fields. It supports novel view and novel pose synthesis, enabling compositional results like transferring reconstructed humans into new scenes. The pipeline separates human/body and environment, learning consistent geometry and appearance to support animation. Demos showcase sequences such as dance and handshake, and the code provides...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    MTCNN Face Detection Alignment

    MTCNN Face Detection Alignment

    Joint Face Detection and Alignment

    MTCNN_face_detection_alignment is an implementation of the “Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks” algorithm. The algorithm uses a cascade of three convolutional networks (P-Net, R-Net, O-Net) to jointly detect faces (bounding boxes) and align facial landmarks in a coarse-to-fine manner, leveraging multi-task learning. Non-maximum suppression and bounding box regression at each stage. The repository includes Caffe / MATLAB code, support scripts,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Premier Construction Software Icon
    Premier Construction Software

    Premier is a global leader in financial construction ERP software.

    Rated #1 Construction Accounting Software by Forbes Advisor in 2022 & 2023. Our modern SAAS solution is designed to meet the needs of General Contractors, Developers/Owners, Homebuilders & Specialty Contractors.
    Learn More
  • 10
    ConvNeXt

    ConvNeXt

    Code release for ConvNeXt model

    ConvNeXt is a modernized convolutional neural network (CNN) architecture designed to rival Vision Transformers (ViTs) in accuracy and scalability while retaining the simplicity and efficiency of CNNs. It revisits classic ResNet-style backbones through the lens of transformer design trends—large kernel sizes, inverted bottlenecks, layer normalization, and GELU activations—to bridge the performance gap between convolutions and attention-based models. ConvNeXt’s clean, hierarchical structure...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TensorNetwork

    TensorNetwork

    A library for easy and efficient manipulation of tensor networks

    TensorNetwork is a high-level library for building and contracting tensor networks—graphical factorizations of large tensors that underpin many algorithms in physics and machine learning. It abstracts networks as nodes and edges, then compiles efficient contraction orders across multiple numeric backends so users can focus on model structure rather than index bookkeeping. Common network families (MPS/TT, PEPS, MERA, tree networks) are expressed with concise APIs that encourage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CAM

    CAM

    Class Activation Mapping

    This repository implements Class Activation Mapping (CAM), a technique to expose the implicit attention of convolutional neural networks by generating heatmaps that highlight the most discriminative image regions influencing a network’s class prediction. The method involves modifying a CNN model slightly (e.g., using global average pooling before the final layer) to produce a weighted combination of feature maps as the class activation map. Integration with existing CNNs (with light...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Nerfies

    Nerfies

    This is the code for Deformable Neural Radiance Fields

    Nerfies demonstrates deformation-aware neural radiance fields that reconstruct and render dynamic, real-world scenes from casual video. Instead of assuming a static world, the method learns a canonical space plus a deformation field that maps changing poses or expressions back to that space during training. This lets the system generate photorealistic novel views of nonrigid subjects—faces, bodies, cloth—while preserving fine detail and consistent lighting. The training pipeline handles...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    The Neural Process Family

    The Neural Process Family

    This repository contains notebook implementations

    Neural Processes (NPs) is a collection of interactive Jupyter/Colab notebook implementations developed by Google DeepMind, showcasing three foundational probabilistic machine learning models: Conditional Neural Processes (CNPs), Neural Processes (NPs), and Attentive Neural Processes (ANPs). These models combine the strengths of neural networks and stochastic processes, allowing for flexible function approximation with uncertainty estimation. They can learn distributions over functions from...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    ResNeXt

    ResNeXt

    Implementation of a classification framework

    ResNeXt is a deep neural network architecture for image classification built on the idea of aggregated residual transformations. Instead of simply increasing depth or width, ResNeXt introduces a new dimension called cardinality, which refers to the number of parallel transformation paths (i.e. the number of “branches”) that are aggregated together. Each branch is a small transformation (e.g. bottleneck block) and their outputs are summed—this enables richer representation without excessive parameter blowup. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    TensorFlow Course

    TensorFlow Course

    Simple and ready-to-use tutorials for TensorFlow

    This repository houses a highly popular (~16k stars) set of TensorFlow tutorials and example code aimed at beginners and intermediate users. It includes Jupyter notebooks and scripts that cover neural network fundamentals, model training, deployment, and more, with support for Google Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Learn_Deep_Learning_in_6_Weeks

    Learn_Deep_Learning_in_6_Weeks

    This is the Curriculum for "Learn Deep Learning in 6 Weeks"

    Learn_Deep_Learning_in_6_Weeks compresses an introductory deep learning curriculum into six weeks of structured learning and practice. It begins with neural network fundamentals and moves through convolutional and recurrent architectures, optimization strategies, regularization, and transfer learning. The materials emphasize code-first understanding: building small models, training them on accessible datasets, and analyzing their behavior. Each week culminates in a tangible outcome—such as a working classifier or sequence model—so progress is visible and motivating. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Compare GAN

    Compare GAN

    Compare GAN code

    compare_gan is a research codebase that standardizes how Generative Adversarial Networks are trained and evaluated so results are comparable across papers and datasets. It offers reference implementations for popular GAN architectures and losses, plus a consistent training harness to remove confounding differences in optimization or preprocessing. The library’s evaluation suite includes widely used metrics and diagnostics that quantify sample quality, diversity, and mode coverage. With...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Mocha.jl

    Mocha.jl

    Deep Learning framework for Julia

    Mocha.jl is a deep learning framework for Julia, inspired by the C++ Caffe framework. It offers efficient implementations of gradient descent solvers and common neural network layers, supports optional unsupervised pre-training, and allows switching to a GPU backend for accelerated performance. The development of Mocha.jl happens in relative early days of Julia. Now that both Julia and the ecosystem has evolved significantly, and with some exciting new tech such as writing GPU kernels...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    GTK+ IOStream

    GTK+ IOStream

    GTK+iostream, Data plots, ORB, Neural Networks, WSOLA

    Create GTK+ interfaces using IOStream style code. Its simple and quick! Also providing simple data plotting (similar to Matlab/Octave), ORB (Object Request Broker), and Neural Network computations. You can create GTK+ GUIs in a few lines of code. Labels<<"Thanks for reading"; (HBox<<Labels).show(); or even one line : (HBox() << (Labels()<<"Thanks for reading")).show(); Inline code destructs the classes, but leaves the widgets/callbacks operating. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    CRFasRNN

    CRFasRNN

    Semantic image segmentation method described in the ICCV 2015 paper

    CRF-RNN is a deep neural architecture that integrates fully connected Conditional Random Fields (CRFs) with Convolutional Neural Networks (CNNs) by reformulating mean-field CRF inference as a Recurrent Neural Network. This fusion enables end-to-end training via backpropagation for semantic image segmentation tasks, eliminating the need for separate, offline post-processing steps.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Feed-forward neural network for python
    ffnet is a fast and easy-to-use feed-forward neural network training solution for python. Many nice features are implemented: arbitrary network connectivity, automatic data normalization, very efficient training tools, network export to fortran code. Now ffnet has also a GUI called ffnetui.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DeepDream

    DeepDream

    This repository contains IPython Notebook with sample code

    DeepDream is a small, educational repository that accompanies Google’s original “Inceptionism” blog post by providing a runnable IPython/Jupyter notebook that demonstrates how to “dream” through a convolutional neural network. The notebook shows how to take a trained vision model and iteratively amplify patterns the network detects, producing the hallmark surreal, hallucinatory visuals. It walks through loading a pretrained network, selecting layers and channels to maximize, computing gradients with respect to the input image, and applying multi-scale “octave” processing to reveal fine and coarse patterns. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    nn22 Basic Neural Networks for Octave

    nn22 Basic Neural Networks for Octave

    Simple .m files, Basic Neural Networks study for Octave (or Matlab)

    --> For a more detailed description check the README text under the 'Files' menu option :) The project consists of a few very simple .m files for a Basic Neural Networks study under Octave (or Matlab). The idea is to provide a context for beginners that will allow to develop neural networks, while at the same time get to see and feel the behavior of a basic neural networks' functioning. The code is completely open to be modified and may suit several scenarios. The code commenting is verbose, and variables and functions do respect English formatting, so that code may be self explanatory. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25

    neuranep

    Neural Network Engineering Platform

    ...SpikeOS was oriented towards computational modeling. NeuraNEP is oriented toward neural network research.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next