Search Results for "python chatbot artificial intelligence" - Page 9

502 projects for "python chatbot artificial intelligence" with 1 filter applied:

  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    GLM-4-32B-0414

    GLM-4-32B-0414

    Open Multilingual Multimodal Chat LMs

    GLM-4-32B-0414 is a powerful open-source large language model featuring 32 billion parameters, designed to deliver performance comparable to leading models like OpenAI’s GPT series. It supports multilingual and multimodal chat capabilities with an extensive 32K token context length, making it ideal for dialogue, reasoning, and complex task completion. The model is pre-trained on 15 trillion tokens of high-quality data, including substantial synthetic reasoning datasets, and further enhanced...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PARL

    PARL

    A high-performance distributed training framework

    PARL is a scalable reinforcement learning framework built on top of PaddlePaddle. It focuses on modularity and ease of use, supporting distributed training and a variety of RL algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AEA Framework

    AEA Framework

    A framework for autonomous economic agent (AEA) development

    agents-aea by Fetch.ai is a framework for building autonomous economic agents (AEAs) that can act independently, communicate, and transact on decentralized networks. It focuses on enabling AI-driven agents to participate in digital marketplaces and ecosystems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    ConvNeXt V2

    ConvNeXt V2

    Code release for ConvNeXt V2 model

    ConvNeXt V2 is an evolution of the ConvNeXt architecture that co-designs convolutional networks alongside self-supervised learning. The V2 version introduces a fully convolutional masked autoencoder (FCMAE) framework where parts of the image are masked and the network reconstructs the missing content, marrying convolutional inductive bias with powerful pretraining. A key innovation is a new Global Response Normalization (GRN) layer added to the ConvNeXt backbone, which enhances feature...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    UnionML

    UnionML

    Build and deploy machine learning microservices

    Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning. Using industry-standard machine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Point-E

    Point-E

    Point cloud diffusion for 3D model synthesis

    point-e is the official repository for Point-E, a generative model developed by OpenAI that produces 3D point clouds from textual (or image) prompts. Its principal advantage is speed: it can generate 3D assets in just 1–2 minutes on a single GPU, which is significantly faster than many competing text-to-3D models. The model works via a two-stage diffusion approach: first, it uses a text → image diffusion network to produce a synthetic 2D view consistent with the prompt; then a second...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    d2l-zh

    d2l-zh

    Chinese-language edition of Dive into Deep Learning

    d2l‑zh is the Chinese-language edition of Dive into Deep Learning, an interactive, open‑source deep learning textbook that combines code, math, and explanatory text. It features runnable Jupyter notebooks compatible with multiple frameworks (e.g., PyTorch, MXNet, TensorFlow), comprehensive theoretical analysis, and exercises. Widely adopted in over 70 countries and used by more than 500 universities for teaching deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    FrankMocap

    FrankMocap

    A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

    FrankMocap is a monocular 3D human capture system that estimates body, hand, and optionally face pose from a single RGB image or video. It regresses parametric human models (e.g., SMPL/SMPL-X) directly, producing temporally stable meshes and joint angles suitable for animation or analytics. The pipeline couples a robust 2D keypoint detector with 3D mesh regression networks and priors that keep results anatomically plausible. It can run frame-by-frame or with temporal smoothing, and includes...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 10
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Shennina

    Shennina

    Automating Host Exploitation with AI

    Shennina is an automated host exploitation framework. The mission of the project is to fully automate the scanning, vulnerability scanning/analysis, and exploitation using Artificial Intelligence. Shennina is integrated with Metasploit and Nmap for performing the attacks, as well as being integrated with an in-house Command-and-Control Server for exfiltrating data from compromised machines automatically. Shennina scans a set of input targets for available network services, uses its AI engine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Video Pre-Training

    Video Pre-Training

    Learning to Act by Watching Unlabeled Online Videos

    The Video PreTraining (VPT) repository provides code and model artifacts for a project where agents learn to act by watching human gameplay videos—specifically, gameplay of Minecraft—using behavioral cloning. The idea is to learn general priors of control from large-scale, unlabeled video data, and then optionally fine-tune those priors for more goal-directed behavior via environment interaction. The repository contains demonstration models of different widths, fine-tuned variants (e.g. for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    ConvNeXt

    ConvNeXt

    Code release for ConvNeXt model

    ConvNeXt is a modernized convolutional neural network (CNN) architecture designed to rival Vision Transformers (ViTs) in accuracy and scalability while retaining the simplicity and efficiency of CNNs. It revisits classic ResNet-style backbones through the lens of transformer design trends—large kernel sizes, inverted bottlenecks, layer normalization, and GELU activations—to bridge the performance gap between convolutions and attention-based models. ConvNeXt’s clean, hierarchical structure...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Guided Diffusion

    Guided Diffusion

    Codebase for Diffusion Models Beat GANS on Image Synthesis

    The guided-diffusion repository is centered on diffusion models for image synthesis, with a focus on classifier guidance and improvements over earlier diffusion frameworks. It is derived from OpenAI’s improved-diffusion work, enhanced to include guided generation where a classifier (or other guidance mechanism) can steer sampling toward desired classes or attributes. The code provides model definitions (UNet, diffusion schedules), sampling and training scripts, and utilities for guidance and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Mask2Former

    Mask2Former

    Code release for "Masked-attention Mask Transformer

    Mask2Former is a unified segmentation architecture that handles semantic, instance, and panoptic segmentation with one model and one training recipe. Its core idea is to cast segmentation as mask classification: a transformer decoder predicts a set of mask queries, each with an associated class score, eliminating the need for task-specific heads. A pixel decoder fuses multi-scale features and feeds masked attention in the transformer so each query focuses computation on its current spatial...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Acme

    Acme

    A library of reinforcement learning components and agents

    Acme is a framework from DeepMind for building scalable and reproducible reinforcement learning agents. It emphasizes modular components, distributed training, and ease of experimentation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    SLM Lab

    SLM Lab

    Modular Deep Reinforcement Learning framework in PyTorch

    SLM Lab is a modular and extensible deep reinforcement learning framework designed for research and practical applications. It provides implementations of various state-of-the-art RL algorithms and emphasizes reproducibility, scalability, and detailed experiment tracking. SLM Lab is structured around a flexible experiment management system, allowing users to define, run, and analyze RL experiments efficiently.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Grade School Math

    Grade School Math

    8.5K high quality grade school math problems

    The grade-school-math repository (sometimes called GSM8K) is a curated dataset of 8,500 high-quality grade school math word problems intended for evaluating mathematical reasoning capabilities of language models. It is structured into 7,500 training problems and 1,000 test problems. These aren’t trivial exercises — many require multi-step reasoning, combining arithmetic operations, and handling intermediate steps (e.g. “If she sold half as many in May… how many in total?”). The problems are...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Pythonidae

    Pythonidae

    Curated decibans of scientific programming resources in Python

    Pythonidae is a curated collection of scientific programming resources in Python, designed to support research and development across a wide range of disciplines. The repository organizes tools and libraries into domain-specific categories, including mathematics, statistics, machine learning, artificial intelligence, biology, chemistry, physics, earth sciences, and supercomputing. It also covers practical areas such as build automation, databases, APIs, computer graphics, and utilities...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ReinventCommunity

    ReinventCommunity

    Jupyter Notebook tutorials for REINVENT 3.2

    This repository is a collection of useful jupyter notebooks, code snippets and example JSON files illustrating the use of Reinvent 3.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TimeSformer

    TimeSformer

    The official pytorch implementation of our paper

    TimeSformer is a vision transformer architecture for video that extends the standard attention mechanism into spatiotemporal attention. The model alternates attention along spatial and temporal dimensions (or designs variants like divided attention) so that it can capture both appearance and motion cues in video. Because the attention is global across frames, TimeSformer can reason about dependencies across long time spans, not just local neighborhoods. The official implementation in PyTorch...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    PyCls

    PyCls

    Codebase for Image Classification Research, written in PyTorch

    pycls is a focused PyTorch codebase for image classification research that emphasizes reproducibility and strong, transparent baselines. It popularized families like RegNet and supports classic architectures (ResNet, ResNeXt) with clean implementations and consistent training recipes. The repository includes highly tuned schedules, augmentations, and regularization settings that make it straightforward to match reported accuracy without guesswork. Distributed training and mixed precision are...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DensePose

    DensePose

    A real-time approach for mapping all human pixels of 2D RGB images

    DensePose is a computer vision system that maps all human pixels in an RGB image to the 3D surface of a human body model. It extends human pose estimation from predicting joint keypoints to providing dense correspondences between 2D images and a canonical 3D mesh (such as the SMPL model). This enables detailed understanding of human shape, motion, and surface appearance directly from images or videos. The repository includes the DensePose network architecture, training code, pretrained...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Denoiser

    Denoiser

    Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)

    Denoiser is a real-time speech enhancement model operating directly on raw waveforms, designed to clean noisy audio while running efficiently on CPU. It uses a causal encoder-decoder architecture with skip connections, optimized with losses defined both in the time domain and frequency domain to better suppress noise while preserving speech. Unlike models that operate on spectrograms alone, this design enables lower latency and coherent waveform output. The implementation includes data...
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.