Python Big Data Tools

View 280 business solutions

Browse free open source Python Big Data Tools and projects below. Use the toggles on the left to filter open source Python Big Data Tools by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    pandas

    pandas

    Fast, flexible and powerful Python data analysis toolkit

    pandas is a Python data analysis library that provides high-performance, user friendly data structures and data analysis tools for the Python programming language. It enables you to carry out entire data analysis workflows in Python without having to switch to a more domain specific language. With pandas, performance, productivity and collaboration in doing data analysis in Python can significantly increase. pandas is continuously being developed to be a fundamental high-level building block for doing practical, real world data analysis in Python, as well as powerful and flexible open source data analysis/ manipulation tool for any language.
    Downloads: 108 This Week
    Last Update:
    See Project
  • 2
    marimo

    marimo

    A reactive notebook for Python

    marimo is an open-source reactive notebook for Python, reproducible, git-friendly, executable as a script, and shareable as an app. marimo notebooks are reproducible, extremely interactive, designed for collaboration (git-friendly!), deployable as scripts or apps, and fit for modern Pythonista. Run one cell and marimo reacts by automatically running affected cells, eliminating the error-prone chore of managing the notebook state. marimo's reactive UI elements, like data frame GUIs and plots, make working with data feel refreshingly fast, futuristic, and intuitive. Version with git, run as Python scripts, import symbols from a notebook into other notebooks or Python files, and lint or format with your favorite tools. You'll always be able to reproduce your collaborators' results. Notebooks are executed in a deterministic order, with no hidden state, delete a cell and marimo deletes its variables while updating affected cells.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    abu

    abu

    Abu quantitative trading system (stocks, options, futures, bitcoin)

    Abu Quantitative Integrated AI Big Data System, K-Line Pattern System, Classic Indicator System, Trend Analysis System, Time Series Dimension System, Statistical Probability System, and Traditional Moving Average System conduct in-depth quantitative analysis of investment varieties, completely crossing the user's complex code quantification stage, more suitable for ordinary people to use, towards the era of vectorization 2.0. The above system combines hundreds of seed quantitative models, such as financial time series loss model, deep pattern quality assessment model, long and short pattern combination evaluation model, long pattern stop-loss strategy model, short pattern covering strategy model, big data K-line pattern Historical portfolio fitting model, trading position mentality model, dopamine quantification model, inertial residual resistance support model, long-short swap revenge probability model, strong and weak confrontation model, trend angle change rate model, etc.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Modin

    Modin

    Scale your Pandas workflows by changing a single line of code

    Scale your pandas workflow by changing a single line of code. Modin uses Ray, Dask or Unidist to provide an effortless way to speed up your pandas notebooks, scripts, and libraries. Unlike other distributed DataFrame libraries, Modin provides seamless integration and compatibility with existing pandas code. Even using the DataFrame constructor is identical. It is not necessary to know in advance the available hardware resources in order to use Modin. Additionally, it is not necessary to specify how to distribute or place data. Modin acts as a drop-in replacement for pandas, which means that you can continue using your previous pandas notebooks, unchanged, while experiencing a considerable speedup thanks to Modin, even on a single machine. Once you’ve changed your import statement, you’re ready to use Modin just like you would pandas.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 5
    Vaex

    Vaex

    Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python

    Data science solutions, insights, dashboards, machine learning, deployment. We start at 100GB. Vaex is a high-performance Python library for lazy Out-of-Core data frames (similar to Pandas), to visualize and explore big tabular datasets. It calculates statistics such as mean, sum, count, standard deviation etc, on an N-dimensional grid for more than a billion (10^9) samples/rows per second. Visualization is done using histograms, density plots and 3d volume rendering, allowing interactive exploration of big data. Vaex uses memory mapping, zero memory copy policy and lazy computations for best performance (no memory wasted). Cut development cut development time by 80%. Your prototype is your solution. Create automatic pipelines for any model.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6

    Augustus

    PMML-compliant scoring engine and analytic toolkit

    Augustus development has moved to google code. The new project page is augustus.googlecode.com. New releases of the project are not currently being released to sourceforge. Augustus is designed for statistical and data mining models and produces and consumes models with 10,000s of segments. Versions of Augustus support PMML 3, 4.0.1, and 4.1.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    gravitino

    gravitino

    Unified metadata lake for data & AI assets.

    Apache Gravitino is a high-performance, geo-distributed, and federated metadata lake. It manages metadata directly in different sources, types, and regions, providing users with unified metadata access for data and AI assets.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    DSTK - DataScience ToolKit

    DSTK - DataScience ToolKit

    DSTK - DataScience ToolKit for All of Us

    DSTK - DataScience ToolKit is an opensource free software for statistical analysis, data visualization, text analysis, and predictive analytics. Newer version and smaller file size can be found at: https://sourceforge.net/projects/dstk3/ It is designed to be straight forward and easy to use, and familar to SPSS user. While JASP offers more statistical features, DSTK tends to be a broad solution workbench, including text analysis and predictive analytics features. Of course you may specify JASP for advanced data editing and RapidMiner for advanced prediction modeling. DSTK is written in C#, Java and Python to interface with R, NLTK, and Weka. It can be expanded with plugins using R Scripts. We have also created plugins for more statistical functions, and Big Data Analytics with Microsoft Azure HDInsights (Spark Server) with Livy. License: R, RStudio, NLTK, SciPy, SKLearn, MatPlotLib, Weka, ... each has their own licenses.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    fooltrader

    fooltrader

    Quant framework for stock

    Build a standard data schema, and then implement various connectors to import systems you are familiar with for analysis. fooltrader is a quantitative analysis trading system designed using big data technology, including data capture, cleaning, structuring, calculation, display, backtesting and trading. Its goal is to provide a unified framework for the whole market (stock, futures, bonds, foreign exchange, digital currency, macroeconomics, etc.) for research, backtesting, forecasting, and trading. Its applicable objects include quantitative traders, teachers, and students majoring in finance, people interested in economic data, programmers, and people who like freedom and the spirit of exploration. You could write the Strategy using an event-driven or time walkway and view and analyze the performance in a uniform way.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.