Showing 3 open source projects for "linux"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1

    Faum

    Fast Autonomous Unsupervised Multidimiensional Classification

    This is the proof-of-concept implementation of the FAUM Clustering method. This implementation was used to perform the published results and is now released in the hope that it will be useful.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    FastoRedis

    FastoRedis

    Cross-platform open source Redis DB management tool

    ...It put the same engine that powers Redis's redis-cli shell. Everything you can write in redis-cli shell — you can write in FastoRedis! Our program works on the most amount of Linux systems, also on Windows, Mac OS X, FreeBSD and Android platforms, on desktops and embedded devices.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3

    Random Bits Forest

    RBF: a Strong Classifier/Regressor for Big Data

    We present a classification and regression algorithm called Random Bits Forest (RBF). RBF integrates neural network (for depth), boosting (for wideness) and random forest (for accuracy). It first generates and selects ~10,000 small three-layer threshold random neural networks as basis by gradient boosting scheme. These binary basis are then feed into a modified random forest algorithm to obtain predictions. In conclusion, RBF is a novel framework that performs strongly especially on data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next