Showing 19 open source projects for "py2exe for python 3.6"

View related business solutions
  • Our Free Plans just got better! | Auth0 by Okta Icon
    Our Free Plans just got better! | Auth0 by Okta

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your secuirty. Auth0 now, thank yourself later.
    Try free now
  • Payroll Services for Small Businesses | QuickBooks Icon
    Payroll Services for Small Businesses | QuickBooks

    Save up to 50% on QuickBooks Online! Keep the Accounting and Book Keeping for your Small Business up to date!

    Easily pay your team and access powerful tools, employee benefits, and supportive experts with the #1 online payroll service provider. Manage payroll and access HR and employee services in one place. Pay your team automatically once your payroll setup is complete. We'll calculate, file, and pay your payroll taxes automatically.
    Learn More
  • 1
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    TextAttack

    TextAttack

    Python framework for adversarial attacks, and data augmentation

    Generating adversarial examples for NLP models. TextAttack is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Lightly

    Lightly

    A python library for self-supervised learning on images

    ... through advanced filtering. We provide PyTorch, PyTorch Lightning and PyTorch Lightning distributed examples for each of the models to kickstart your project. Lightly requires Python 3.6+ but we recommend using Python 3.7+. We recommend installing Lightly in a Linux or OSX environment. With lightly, you can use the latest self-supervised learning methods in a modular way using the full power of PyTorch. Experiment with different backbones, models, and loss functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models. GluonTS requires Python 3.6 or newer, and the easiest way to install it is via pip. We train a DeepAR-model and make predictions using the simple "airpassengers" dataset. The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months). We split the dataset into train and test parts...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Top-Rated Free CRM Software Icon
    Top-Rated Free CRM Software

    216,000+ customers in over 135 countries grow their businesses with HubSpot

    HubSpot is an AI-powered customer platform with all the software, integrations, and resources you need to connect your marketing, sales, and customer service. HubSpot's connected platform enables you to grow your business faster by focusing on what matters most: your customers.
    Get started free
  • 5
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    ... deep learning. Spektral also includes lots of utilities for representing, manipulating, and transforming graphs in your graph deep learning projects. Spektral is compatible with Python 3.6 and above, and is tested on the latest versions of Ubuntu, MacOS, and Windows. Other Linux distros should work as well. The 1.0 release of Spektral is an important milestone for the library and brings many new features and improvements.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    PyTorch Implementation of SDE Solvers

    PyTorch Implementation of SDE Solvers

    Differentiable SDE solvers with GPU support and efficient sensitivity

    This library provides stochastic differential equation (SDE) solvers with GPU support and efficient backpropagation. examples/demo.ipynb gives a short guide on how to solve SDEs, including subtle points such as fixing the randomness in the solver and the choice of noise types. examples/latent_sde.py learns a latent stochastic differential equation, as in Section 5 of [1]. The example fits an SDE to data, whilst regularizing it to be like an Ornstein-Uhlenbeck prior process. The model can be...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    ... something totally new. Catalyst is compatible with Python 3.6+. PyTorch 1.1+, and has been tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10 and Windows Subsystem for Linux. It's part of the PyTorch Ecosystem, as well as the Catalyst Ecosystem which includes Alchemy (experiments logging & visualization) and Reaction (convenient deep learning models serving).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Old Photo Restoration

    Old Photo Restoration

    Bringing Old Photo Back to Life (CVPR 2020 oral)

    We propose to restore old photos that suffer from severe degradation through a deep learning approach. Unlike conventional restoration tasks that can be solved through supervised learning, the degradation in real photos is complex and the domain gap between synthetic images and real old photos makes the network fail to generalize. Therefore, we propose a novel triplet domain translation network by leveraging real photos along with massive synthetic image pairs. Specifically, we train two...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Bright Data - All in One Platform for Proxies and Web Scraping Icon
    Bright Data - All in One Platform for Proxies and Web Scraping

    Say goodbye to blocks, restrictions, and CAPTCHAs

    Bright Data offers the highest quality proxies with automated session management, IP rotation, and advanced web unlocking technology. Enjoy reliable, fast performance with easy integration, a user-friendly dashboard, and enterprise-grade scaling. Powered by ethically-sourced residential IPs for seamless web scraping.
    Get Started
  • 10
    CRSLab

    CRSLab

    CRSLab is an open-source toolkit

    CRSLab is an open-source toolkit for building Conversational Recommender System (CRS). It is developed based on Python and PyTorch. CRSLab has the following highlights. Comprehensive benchmark models and datasets: We have integrated commonly-used 6 datasets and 18 models, including graph neural network and pre-training models such as R-GCN, BERT and GPT-2. We have preprocessed these datasets to support these models, and release for downloading. Extensive and standard evaluation protocols: We...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Deep Exemplar-based Video Colorization

    Deep Exemplar-based Video Colorization

    The source code of CVPR 2019 paper "Deep Exemplar-based Colorization"

    The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization". End-to-end network for exemplar-based video colorization. The main challenge is to achieve temporal consistency while remaining faithful to the reference style. To address this issue, we introduce a recurrent framework that unifies the semantic correspondence and color propagation steps. Both steps allow a provided reference image to guide the colorization of every frame, thus reducing accumulated propagation...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Turi Create

    Turi Create

    Simplifies the development of custom machine learning models

    Turi Create simplifies the development of custom machine learning models. You don't have to be a machine learning expert to add recommendations, object detection, image classification, image similarity or activity classification to your app. If you want your app to recognize specific objects in images, you can build your own model with just a few lines of code. Turi Create supports macOS 10.12+, Linux (with glibc 2.10+), Windows 10 (via WSL). Turi Create requires Python 2.7, 3.5, 3.6, 3.7, 3.8...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    ChainerRL

    ChainerRL

    ChainerRL is a deep reinforcement learning library

    ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. PFRL is the PyTorch analog of ChainerRL. ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI. Environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    ... commands. When training your own model, start with only PSNR loss (50+ epochs, depending on the dataset) and only then introduce GANS and feature loss. This can be controlled by the loss weights argument. The weights used to produce these images are available directly when creating the model object. ISR is compatible with Python 3.6 and is distributed under the Apache 2.0 license.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    TGAN

    TGAN

    Generative adversarial training for generating synthetic tabular data

    We are happy to announce that our new model for synthetic data called CTGAN is open-sourced. The new model is simpler and gives better performance on many datasets. TGAN is a tabular data synthesizer. It can generate fully synthetic data from real data. Currently, TGAN can generate numerical columns and categorical columns. TGAN has been developed and runs on Python 3.5, 3.6 and 3.7. Also, although it is not strictly required, the usage of a virtualenv is highly recommended in order to avoid...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NeuralCoref

    NeuralCoref

    Fast Coreference Resolution in spaCy with Neural Networks

    NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolves coreference clusters using a neural network. NeuralCoref is production-ready, integrated in spaCy's NLP pipeline and extensible to new training datasets. For a brief introduction to coreference resolution and NeuralCoref, please refer to our blog post. NeuralCoref is written in Python/Cython and comes with a pre-trained statistical model for English only. NeuralCoref is accompanied by a visualization client...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    PyTorch pretrained BigGAN

    PyTorch pretrained BigGAN

    PyTorch implementation of BigGAN with pretrained weights

    An op-for-op PyTorch reimplementation of DeepMind's BigGAN model with the pre-trained weights from DeepMind. This repository contains an op-for-op PyTorch reimplementation of DeepMind's BigGAN that was released with the paper Large Scale GAN Training for High Fidelity Natural Image Synthesis. This PyTorch implementation of BigGAN is provided with the pretrained 128x128, 256x256 and 512x512 models by DeepMind. We also provide the scripts used to download and convert these models from the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Neural Network signal recognition rtlsdr

    Neural Network signal recognition rtlsdr

    Deep learning signal classification (recognition) using rtl-sdr dongle

    WARNING: Outdated version here. Everything has been moved to github: https://github.com/randaller/cnn-rtlsdr
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    FM2TXT

    FM2TXT

    RtlSdr listen to radio, recognize audio, and writes text file log

    Just log your favorite FM station speech to a text file using rtl-sdr dongle and speech recognition. Cross-platform tool. Follow the README on the download page for Windows installation. https://sourceforge.net/projects/fm2txt-rtlsdr/files/ If you prefer GitHub source, not SF: https://github.com/randaller/fm2txt For those, who want to recognize from soundcard, not from rtl-sdr (this allows to transcribe NFM etc): https://github.com/randaller/souncard2txt
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next